Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
2.
Vascul Pharmacol ; 154: 107249, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38070759

RESUMO

The prevalence of non-alcoholic fatty liver disease (NAFLD) and atherosclerosis remain high, which is primarily due to widespread adoption of a western diet and sedentary lifestyle. NAFLD, together with advanced forms of this disease such as non-alcoholic steatohepatitis (NASH) and cirrhosis, are closely associated with atherosclerotic-cardiovascular disease (ASCVD). In this review, we discussed the association between NAFLD and atherosclerosis and expounded on the common molecular biomarkers underpinning the pathogenesis of both NAFLD and atherosclerosis. Furthermore, we have summarized the mode of function and potential clinical utility of existing drugs in the context of these diseases.


Assuntos
Aterosclerose , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Cirrose Hepática , Fibrose , Biomarcadores , Aterosclerose/patologia , Fígado/patologia
3.
Proc Natl Acad Sci U S A ; 120(41): e2308941120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782785

RESUMO

Impaired lymphatic drainage and lymphedema are major morbidities whose mechanisms have remained obscure. To study lymphatic drainage and its impairment, we engineered a microfluidic culture model of lymphatic vessels draining interstitial fluid. This lymphatic drainage-on-chip revealed that inflammatory cytokines that are known to disrupt blood vessel junctions instead tightened lymphatic cell-cell junctions and impeded lymphatic drainage. This opposing response was further demonstrated when inhibition of rho-associated protein kinase (ROCK) was found to normalize fluid drainage under cytokine challenge by simultaneously loosening lymphatic junctions and tightening blood vessel junctions. Studies also revealed a previously undescribed shift in ROCK isoforms in lymphatic endothelial cells, wherein a ROCK2/junctional adhesion molecule-A (JAM-A) complex emerges that is responsible for the cytokine-induced lymphatic junction zippering. To validate these in vitro findings, we further demonstrated in a genetic mouse model that lymphatic-specific knockout of ROCK2 reversed lymphedema in vivo. These studies provide a unique platform to generate interstitial fluid pressure and measure the drainage of interstitial fluid into lymphatics and reveal a previously unappreciated ROCK2-mediated mechanism in regulating lymphatic drainage.


Assuntos
Molécula A de Adesão Juncional , Vasos Linfáticos , Linfedema , Quinases Associadas a rho , Animais , Camundongos , Biomimética , Citocinas/metabolismo , Células Endoteliais/metabolismo , Junções Intercelulares , Molécula A de Adesão Juncional/metabolismo , Vasos Linfáticos/metabolismo , Linfedema/genética , Linfedema/metabolismo , Quinases Associadas a rho/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 43(1): e1-e10, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36453280

RESUMO

Lymphatic vessels are low-pressure, blind-ended tubular structures that play a crucial role in the maintenance of tissue fluid homeostasis, immune cell trafficking, and dietary lipid uptake and transport. Emerging research has indicated that the promotion of lymphatic vascular growth, remodeling, and function can reduce inflammation and diminish disease severity in several pathophysiologic conditions. In particular, recent groundbreaking studies have shown that lymphangiogenesis, which describes the formation of new lymphatic vessels from the existing lymphatic vasculature, can be beneficial for the alleviation and resolution of metabolic and cardiovascular diseases. Therefore, promoting lymphangiogenesis represents a promising therapeutic approach. This brief review summarizes the most recent findings related to the modulation of lymphatic function to treat metabolic and cardiovascular diseases such as obesity, myocardial infarction, atherosclerosis, and hypertension. We also discuss experimental and therapeutic approaches to enforce lymphatic growth and remodeling as well as efforts to define the molecular and cellular mechanisms underlying these processes.


Assuntos
Vasos Linfáticos , Doenças Metabólicas , Infarto do Miocárdio , Humanos , Linfangiogênese , Vasos Linfáticos/metabolismo , Coração , Infarto do Miocárdio/metabolismo , Doenças Metabólicas/metabolismo
5.
Nat Commun ; 13(1): 7959, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36575174

RESUMO

The progression of cancer from localized to metastatic disease is the primary cause of morbidity and mortality. The interplay between the tumor and its microenvironment is the key driver in this process of tumor progression. In order for tumors to progress and metastasize they must reprogram the cells that make up the microenvironment to promote tumor growth and suppress endogenous defense systems, such as the immune and inflammatory response. We have previously demonstrated that stimulation of Tsp-1 in the tumor microenvironment (TME) potently inhibits tumor growth and progression. Here, we identify a novel tumor-mediated mechanism that represses the expression of Tsp-1 in the TME via secretion of the serine protease PRSS2. We demonstrate that PRSS2 represses Tsp-1, not via its enzymatic activity, but by binding to low-density lipoprotein receptor-related protein 1 (LRP1). These findings describe a hitherto undescribed activity for PRSS2 through binding to LRP1 and represent a potential therapeutic strategy to treat cancer by blocking the PRSS2-mediated repression of Tsp-1. Based on the ability of PRSS2 to reprogram the tumor microenvironment, this discovery could lead to the development of therapeutic agents that are indication agnostic.


Assuntos
Neoplasias , Trombospondina 1 , Humanos , Trombospondina 1/genética , Trombospondina 1/metabolismo , Microambiente Tumoral/genética , Neoplasias/genética , Tripsina , Tripsinogênio
6.
Am J Pathol ; 192(11): 1592-1603, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35985479

RESUMO

Appropriate coordination of smooth muscle contraction and relaxation is essential for normal colonic motility. The impact of perturbed motility ranges from moderate, in conditions such as colitis, to potentially fatal in the case of pseudo-obstruction. The mechanisms underlying aberrant motility and the extent to which they can be targeted pharmacologically are incompletely understood. This study identified colonic smooth muscle as a major site of expression of neuropilin 2 (Nrp2) in mice and humans. Mice with inducible smooth muscle-specific knockout of Nrp2 had an increase in evoked contraction of colonic rings in response to carbachol at 1 and 4 weeks following initiation of deletion. KCl-induced contractions were also increased at 4 weeks. Colonic motility was similarly enhanced, as evidenced by faster bead expulsion in Nrp2-deleted mice versus Nrp2-intact controls. In length-tension analysis of the distal colon, passive tension was similar in Nrp2-deficient and Nrp2-intact mice, but at low strains, active stiffness was greater in Nrp2-deficient animals. Consistent with the findings in conditional Nrp2 mice, Nrp2-null mice showed increased contractility in response to carbachol and KCl. Evaluation of selected proteins implicated in smooth muscle contraction revealed no significant differences in the level of α-smooth muscle actin, myosin light chain, calponin, or RhoA. Together, these findings identify Nrp2 as a novel regulator of colonic contractility that may be targetable in conditions characterized by dysmotility.


Assuntos
Colo , Motilidade Gastrointestinal , Contração Muscular , Músculo Liso , Neuropilina-2 , Animais , Humanos , Camundongos , Carbacol/farmacologia , Colo/metabolismo , Colo/fisiologia , Camundongos Knockout , Contração Muscular/efeitos dos fármacos , Contração Muscular/genética , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Neuropilina-2/genética , Neuropilina-2/metabolismo , Motilidade Gastrointestinal/efeitos dos fármacos , Motilidade Gastrointestinal/genética
7.
Front Cardiovasc Med ; 9: 841928, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252405

RESUMO

Diabetes mellitus is a worldwide health problem that usually comes with severe complications. There is no cure for diabetes yet and the threat of these complications is what keeps researchers investigating mechanisms and treatments for diabetes mellitus. Due to advancements in genomics, epigenomics, proteomics, and single-cell multiomics research, considerable progress has been made toward understanding the mechanisms of diabetes mellitus. In addition, investigation of the association between diabetes and other physiological systems revealed potentially novel pathways and targets involved in the initiation and progress of diabetes. This review focuses on current advancements in studying the mechanisms of diabetes by using genomic, epigenomic, proteomic, and single-cell multiomic analysis methods. It will also focus on recent findings pertaining to the relationship between diabetes and other biological processes, and new findings on the contribution of diabetes to several pathological conditions.

8.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607951

RESUMO

Cancer therapy reduces tumor burden via tumor cell death ("debris"), which can accelerate tumor progression via the failure of inflammation resolution. Thus, there is an urgent need to develop treatment modalities that stimulate the clearance or resolution of inflammation-associated debris. Here, we demonstrate that chemotherapy-generated debris stimulates metastasis by up-regulating soluble epoxide hydrolase (sEH) and the prostaglandin E2 receptor 4 (EP4). Therapy-induced tumor cell debris triggers a storm of proinflammatory and proangiogenic eicosanoid-driven cytokines. Thus, targeting a single eicosanoid or cytokine is unlikely to prevent chemotherapy-induced metastasis. Pharmacological abrogation of both sEH and EP4 eicosanoid pathways prevents hepato-pancreatic tumor growth and liver metastasis by promoting macrophage phagocytosis of debris and counterregulating a protumorigenic eicosanoid and cytokine storm. Therefore, stimulating the clearance of tumor cell debris via combined sEH and EP4 inhibition is an approach to prevent debris-stimulated metastasis and tumor growth.


Assuntos
Eicosanoides/metabolismo , Epóxido Hidrolases/biossíntese , Macrófagos/imunologia , Metástase Neoplásica/patologia , Receptores de Prostaglandina E Subtipo EP4/biossíntese , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/patologia , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/prevenção & controle , Citocinas/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica/prevenção & controle , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Fagocitose/imunologia , Células RAW 264.7
9.
Sci Rep ; 11(1): 11827, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34088930

RESUMO

Morbidity and mortality for neonates with congenital diaphragmatic hernia-associated pulmonary hypoplasia remains high. These patients may be deficient in vascular endothelial growth factor (VEGF). Our lab previously established that exogenous VEGF164 accelerates compensatory lung growth (CLG) after left pneumonectomy in a murine model. We aimed to further investigate VEGF-mediated CLG by examining the role of the heparin-binding domain (HBD). Eight-week-old, male, C57BL/6J mice underwent left pneumonectomy, followed by post-operative and daily intraperitoneal injections of equimolar VEGF164 or VEGF120, which lacks the HBD. Isovolumetric saline was used as a control. VEGF164 significantly increased lung volume, total lung capacity, and alveolarization, while VEGF120 did not. Treadmill exercise tolerance testing (TETT) demonstrated improved functional outcomes post-pneumonectomy with VEGF164 treatment. In lung protein analysis, VEGF treatment modulated downstream angiogenic signaling. Activation of epithelial growth factor receptor and pulmonary cell proliferation was also upregulated. Human microvascular lung endothelial cells (HMVEC-L) treated with VEGF demonstrated decreased potency of VEGFR2 activation with VEGF121 treatment compared to VEGF165 treatment. Taken together, these data indicate that the VEGF HBD contributes to angiogenic and proliferative signaling, is required for accelerated compensatory lung growth, and improves functional outcomes in a murine CLG model.


Assuntos
Heparina/química , Pulmão/fisiopatologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Desenho de Fármacos , Células Endoteliais/metabolismo , Teste de Esforço , Hematócrito , Humanos , Pulmão/metabolismo , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação , Pneumonectomia , Domínios Proteicos , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/química
10.
J Clin Invest ; 131(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-32960814

RESUMO

Estrogen receptor-negative (ER-negative) breast cancer is thought to be more malignant and devastating than ER-positive breast cancer. ER-negative breast cancer exhibits elevated NF-κB activity, but how this abnormally high NF-κB activity is maintained is poorly understood. The importance of linear ubiquitination, which is generated by the linear ubiquitin chain assembly complex (LUBAC), is increasingly appreciated in NF-κB signaling, which regulates cell activation and death. Here, we showed that epsin proteins, a family of ubiquitin-binding endocytic adaptors, interacted with LUBAC via its ubiquitin-interacting motif and bound LUBAC's bona fide substrate NEMO via its N-terminal homolog (ENTH) domain. Furthermore, epsins promoted NF-κB essential modulator (NEMO) linear ubiquitination and served as scaffolds for recruiting other components of the IκB kinase (IKK) complex, resulting in the heightened IKK activation and sustained NF-κB signaling essential for the development of ER-negative breast cancer. Heightened epsin levels in ER-negative human breast cancer are associated with poor relapse-free survival. We showed that transgenic and pharmacological approaches eliminating epsins potently impeded breast cancer development in both spontaneous and patient-derived xenograft breast cancer mouse models. Our findings established the pivotal role epsins played in promoting breast cancer. Thus, targeting epsins may represent a strategy to restrain NF-κB signaling and provide an important perspective into ER-negative breast cancer treatment.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Mamárias Animais/metabolismo , Proteínas de Neoplasias/metabolismo , Transdução de Sinais , Ubiquitinação , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Feminino , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Mamárias Animais/genética , Neoplasias Mamárias Animais/patologia , Camundongos , Camundongos Knockout , Proteínas de Neoplasias/genética
11.
Transl Vis Sci Technol ; 9(8): 26, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32855872

RESUMO

Purpose: Acute orbital inflammation can lead to irreversible vision loss in serious cases. Treatment thus far has been limited to systemic steroids or surgical decompression of the orbit. An animal model that mimics the characteristic features of acute orbital inflammation as found in thyroid eye disease can be used to explore novel treatment modalities. Methods: We developed a murine model of orbital inflammation by injecting oxazolone into the mouse orbit. The mice underwent magnetic resonance imaging (MRI) and were euthanized at various time points for histologic examination. Immunofluorescence studies of specific inflammatory cells and cytokine arrays were performed. Results: We found clinical and radiographic congruity between the murine model and human disease. After 72 hours, sensitized mice exhibited periorbital dermatitis and inflammation in the eyelids of the injected side. By one week, increased proptosis in the injected eye with significant eyelid edema was appreciated. By four weeks, inflammation and proptosis were decreased. At all three time points, the mice demonstrated exophthalmos and periorbital edema. Histopathologically, populations of inflammatory cells including T cells, macrophages, and neutrophils shared similarities with patient samples in thyroid eye disease. Proteomic changes in the levels of inflammatory and angiogenic markers correlated to the expected angiogenic, inflammatory, and fibrotic responses observed in patients with thyroid eye disease. Conclusions: A murine model of orbital inflammation created using oxazolone recapitulates some of the clinical features of thyroid eye disease and potentially other nonspecific orbital inflammation, typified by inflammatory cell infiltration, orbital tissue expansion and remodeling, and subsequent fibrosis. Translational Relevance: This animal model could serve as a viable platform with which to understand the underlying mechanisms of acute orbital inflammation and to investigate potential new, targeted treatments.


Assuntos
Oftalmopatia de Graves , Oxazolona , Animais , Modelos Animais de Doenças , Humanos , Inflamação/induzido quimicamente , Camundongos , Oxazolona/toxicidade , Proteômica
12.
Proc Natl Acad Sci U S A ; 117(35): 21576-21587, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32801214

RESUMO

Toxic environmental carcinogens promote cancer via genotoxic and nongenotoxic pathways, but nongenetic mechanisms remain poorly characterized. Carcinogen-induced apoptosis may trigger escape from dormancy of microtumors by interfering with inflammation resolution and triggering an endoplasmic reticulum (ER) stress response. While eicosanoid and cytokine storms are well-characterized in infection and inflammation, they are poorly characterized in cancer. Here, we demonstrate that carcinogens, such as aflatoxin B1 (AFB1), induce apoptotic cell death and the resulting cell debris stimulates hepatocellular carcinoma (HCC) tumor growth via an "eicosanoid and cytokine storm." AFB1-generated debris up-regulates cyclooxygenase-2 (COX-2), soluble epoxide hydrolase (sEH), ER stress-response genes including BiP, CHOP, and PDI in macrophages. Thus, selective cytokine or eicosanoid blockade is unlikely to prevent carcinogen-induced cancer progression. Pharmacological abrogation of both the COX-2 and sEH pathways by PTUPB prevented the debris-stimulated eicosanoid and cytokine storm, down-regulated ER stress genes, and promoted macrophage phagocytosis of debris, resulting in suppression of HCC tumor growth. Thus, inflammation resolution via dual COX-2/sEH inhibition is an approach to prevent carcinogen-induced cancer.


Assuntos
Citocinas/metabolismo , Eicosanoides/metabolismo , Neoplasias Hepáticas/metabolismo , Aflatoxina B1/efeitos adversos , Animais , Apoptose , Carcinogênese/metabolismo , Carcinógenos/metabolismo , Carcinoma Hepatocelular/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Citocinas/imunologia , Progressão da Doença , Eicosanoides/imunologia , Epóxido Hidrolases/metabolismo , Células Hep G2 , Humanos , Inflamação/metabolismo , Neoplasias Hepáticas/fisiopatologia , Macrófagos/metabolismo , Camundongos , Processos Neoplásicos
13.
J Vis Exp ; (160)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32628176

RESUMO

We describe the implementation of spinal cord injury in mice to elicit detrusor-sphincter dyssynergia, a functional bladder outlet obstruction, and subsequent bladder wall remodeling. To facilitate assessment of the cellular composition of the bladder wall in non-injured control and spinal cord injured mice, we developed an optimized dissociation protocol that supports high cell viability and enables the detection of discrete subpopulations by flow cytometry. Spinal cord injury is created by complete transection of the thoracic spinal cord. At the time of tissue harvest, the animal is perfused with phosphate-buffered saline under deep anesthesia and bladders are harvested into Tyrode's buffer. Tissues are minced prior to incubation in digestion buffer that has been optimized based on the collagen content of mouse bladder as determined by interrogation of publicly available gene expression databases. Following generation of a single cell suspension, material is analyzed by flow cytometry for assessment of cell viability, cell number and specific subpopulations. We demonstrate that the method yields cell populations with greater than 90% viability, and robust representation of cells of mesenchymal and epithelial origin. This method will enable accurate downstream analysis of discrete cell types in mouse bladder and potentially other organs.


Assuntos
Separação Celular/métodos , Traumatismos da Medula Espinal/patologia , Bexiga Urinária/patologia , Animais , Calibragem , Sobrevivência Celular , Análise de Dados , Matriz Extracelular/metabolismo , Feminino , Citometria de Fluxo , Camundongos , Perfusão , Traumatismos da Medula Espinal/cirurgia , Transcriptoma/genética
14.
Front Oncol ; 10: 594141, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33738243

RESUMO

In American men, prostate cancer is the second leading cause of cancer-related death. Dissemination of prostate cancer cells to distant organs significantly worsens patients' prognosis, and currently there are no effective treatment options that can cure advanced-stage prostate cancer. In an effort to identify compounds selective for metastatic prostate cancer cells over benign prostate cancer cells or normal prostate epithelial cells, we applied a phenotype-based in vitro drug screening method utilizing multiple prostate cancer cell lines to test 1,120 different compounds from a commercial drug library. Top drug candidates were then examined in multiple mouse xenograft models including subcutaneous tumor growth, experimental lung metastasis, and experimental bone metastasis assays. A subset of compounds including fenbendazole, fluspirilene, clofazimine, niclosamide, and suloctidil showed preferential cytotoxicity and apoptosis towards metastatic prostate cancer cells in vitro and in vivo. The bioavailability of the most discerning agents, especially fenbendazole and albendazole, was improved by formulating as micelles or nanoparticles. The enhanced forms of fenbendazole and albendazole significantly prolonged survival in mice bearing metastases, and albendazole-treated mice displayed significantly longer median survival times than paclitaxel-treated mice. Importantly, these drugs effectively targeted taxane-resistant tumors and bone metastases - two common clinical conditions in patients with aggressive prostate cancer. In summary, we find that metastatic prostate tumor cells differ from benign prostate tumor cells in their sensitivity to certain drug classes. Taken together, our results strongly suggest that albendazole, an anthelmintic medication, may represent a potential adjuvant or neoadjuvant to standard therapy in the treatment of disseminated prostate cancer.

15.
J Clin Invest ; 129(7): 2964-2979, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31205032

RESUMO

Cancer therapy is a double-edged sword, as surgery and chemotherapy can induce an inflammatory/immunosuppressive injury response that promotes dormancy escape and tumor recurrence. We hypothesized that these events could be altered by early blockade of the inflammatory cascade and/or by accelerating the resolution of inflammation. Preoperative, but not postoperative, administration of the nonsteroidal antiinflammatory drug ketorolac and/or resolvins, a family of specialized proresolving autacoid mediators, eliminated micrometastases in multiple tumor-resection models, resulting in long-term survival. Ketorolac unleashed anticancer T cell immunity that was augmented by immune checkpoint blockade, negated by adjuvant chemotherapy, and dependent on inhibition of the COX-1/thromboxane A2 (TXA2) pathway. Preoperative stimulation of inflammation resolution via resolvins (RvD2, RvD3, and RvD4) inhibited metastases and induced T cell responses. Ketorolac and resolvins exhibited synergistic antitumor activity and prevented surgery- or chemotherapy-induced dormancy escape. Thus, simultaneously blocking the ensuing proinflammatory response and activating endogenous resolution programs before surgery may eliminate micrometastases and reduce tumor recurrence.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Imunidade Celular/efeitos dos fármacos , Cetorolaco/farmacologia , Recidiva Local de Neoplasia/prevenção & controle , Neoplasias Experimentais , Cuidados Pré-Operatórios , Linfócitos T/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Metástase Neoplásica , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Linfócitos T/patologia
16.
Proc Natl Acad Sci U S A ; 116(13): 6292-6297, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30862734

RESUMO

Inflammation in the tumor microenvironment is a strong promoter of tumor growth. Substantial epidemiologic evidence suggests that aspirin, which suppresses inflammation, reduces the risk of cancer. The mechanism by which aspirin inhibits cancer has remained unclear, and toxicity has limited its clinical use. Aspirin not only blocks the biosynthesis of prostaglandins, but also stimulates the endogenous production of anti-inflammatory and proresolving mediators termed aspirin-triggered specialized proresolving mediators (AT-SPMs), such as aspirin-triggered resolvins (AT-RvDs) and lipoxins (AT-LXs). Using genetic and pharmacologic manipulation of a proresolving receptor, we demonstrate that AT-RvDs mediate the antitumor activity of aspirin. Moreover, treatment of mice with AT-RvDs (e.g., AT-RvD1 and AT-RvD3) or AT-LXA4 inhibited primary tumor growth by enhancing macrophage phagocytosis of tumor cell debris and counter-regulating macrophage-secreted proinflammatory cytokines, including migration inhibitory factor, plasminogen activator inhibitor-1, and C-C motif chemokine ligand 2/monocyte chemoattractant protein 1. Thus, the pro-resolution activity of AT-resolvins and AT-lipoxins may explain some of aspirin's broad anticancer activity. These AT-SPMs are active at considerably lower concentrations than aspirin, and thus may provide a nontoxic approach to harnessing aspirin's anticancer activity.


Assuntos
Antineoplásicos/farmacologia , Aspirina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Animais , Aspirina/administração & dosagem , Quimiocina CCL2/metabolismo , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/metabolismo , Eicosanoides/metabolismo , Ácidos Graxos Insaturados/metabolismo , Feminino , Inflamação/tratamento farmacológico , Lipoxinas/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/metabolismo , Metástase Neoplásica/tratamento farmacológico , Metástase Neoplásica/prevenção & controle , Proteínas do Tecido Nervoso/metabolismo , Fagocitose/efeitos dos fármacos , Inativadores de Plasminogênio/metabolismo , Prostaglandinas/metabolismo
17.
Proc Natl Acad Sci U S A ; 116(5): 1698-1703, 2019 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-30647111

RESUMO

Although chemotherapy is a conventional cancer treatment, it may induce a protumorigenic microenvironment by triggering the release of proinflammatory mediators. In this study, we demonstrate that ovarian tumor cell debris generated by first-line platinum- and taxane-based chemotherapy accelerates tumor progression by stimulating a macrophage-derived "surge" of proinflammatory cytokines and bioactive lipids. Thus, targeting a single inflammatory mediator or pathway is unlikely to prevent therapy-induced tumor progression. Here, we show that combined pharmacological abrogation of the cyclooxygenase-2 (COX-2) and soluble epoxide hydrolase (sEH) pathways prevented the debris-induced surge of both cytokines and lipid mediators by macrophages. In animal models, the dual COX-2/sEH inhibitor PTUPB delayed the onset of debris-stimulated ovarian tumor growth and ascites leading to sustained survival over 120 days postinjection. Therefore, dual inhibition of COX-2/sEH may be an approach to suppress debris-stimulated ovarian tumor growth by preventing the therapy-induced surge of cytokines and lipid mediators.


Assuntos
Antineoplásicos/efeitos adversos , Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Epóxido Hidrolases/antagonistas & inibidores , Neoplasias Ovarianas/tratamento farmacológico , Animais , Hidrocarbonetos Aromáticos com Pontes/farmacologia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Carcinoma Epitelial do Ovário/metabolismo , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Progressão da Doença , Feminino , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Lipídeos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Neoplasias Ovarianas/metabolismo , Platina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Taxoides/farmacologia
18.
FASEB J ; 33(1): 114-125, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-29957058

RESUMO

Colon cancer recurrence after therapy, such as 5-fluorouracil (5-FU), remains a challenge in the clinical setting. Chemotherapy reduces tumor burden by inducing cell death; however, the resulting dead tumor cells, or debris, may paradoxically stimulate angiogenesis, inflammation, and tumor growth. Here, we demonstrate that 5-FU-generated colon carcinoma debris stimulates the growth of a subthreshold inoculum of living tumor cells in subcutaneous and orthotopic models. Debris triggered the release of osteopontin (OPN) by tumor cells and host macrophages. Both coinjection of debris and systemic treatment with 5-FU increased plasma OPN levels in tumor-bearing mice. RNA expression levels of secreted phosphoprotein 1, the gene that encodes OPN, correlate with poor prognosis in patients with colorectal cancer and are elevated in chemotherapy-treated patients who experience tumor recurrence vs. no recurrence. Pharmacologic and genetic ablation of OPN inhibited debris-stimulated tumor growth. Systemic treatment with a combination of a neutralizing OPN antibody and 5-FU dramatically inhibited tumor growth. These results demonstrate a novel mechanism of tumor progression mediated by OPN released in response to chemotherapy-generated tumor cell debris. Neutralization of debris-stimulated OPN represents a potential therapeutic strategy to overcome the inherent limitation of cytotoxic therapies as a result of the generation of cell debris.-Chang, J., Bhasin, S. S., Bielenberg, D. R., Sukhatme, V. P., Bhasin, M., Huang, S., Kieran, M. W., Panigrahy, D. Chemotherapy-generated cell debris stimulates colon carcinoma tumor growth via osteopontin.


Assuntos
Neoplasias do Colo/patologia , Fluoruracila/farmacologia , Neovascularização Patológica/patologia , Osteopontina/metabolismo , Animais , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 13(12): e0208579, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30566445

RESUMO

Exogenous vascular endothelial growth factor (VEGF) accelerates compensatory lung growth (CLG) in mice after unilateral pneumonectomy. In this study, we unexpectedly discovered a method to enhance CLG with a VEGF inhibitor, soluble VEGFR1. Eight-week-old C57BL/6 male mice underwent left pneumonectomy, followed by daily intraperitoneal (ip) injection of either saline (control) or 20 µg/kg of VEGFR1-Fc. On post-operative day (POD) 4, mice underwent pulmonary function tests (PFT) and lungs were harvested for volume measurement and analyses of the VEGF signaling pathway. To investigate the role of hypoxia in mediating the effects of VEGFR1, experiments were repeated with concurrent administration of PT-2385, an inhibitor of hypoxia-induced factor (HIF)2α, via orogastric gavage at 10 mg/kg every 12 hours for 4 days. We found that VEGFR1-treated mice had increased total lung capacity (P = 0.006), pulmonary compliance (P = 0.03), and post-euthanasia lung volume (P = 0.049) compared to control mice. VEGFR1 treatment increased pulmonary levels of VEGF (P = 0.008) and VEGFR2 (P = 0.01). It also stimulated endothelial proliferation (P < 0.0001) and enhanced pulmonary surfactant production (P = 0.03). The addition of PT-2385 abolished the increase in lung volume and endothelial proliferation in response to VEGFR1. By paradoxically stimulating angiogenesis and enhancing lung growth, VEGFR1 could represent a new treatment strategy for neonatal lung diseases characterized by dysfunction of the HIF-VEGF pathway.


Assuntos
Pulmão/efeitos dos fármacos , Proteínas Recombinantes de Fusão/farmacologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Relação Dose-Resposta a Droga , Meia-Vida , Pulmão/crescimento & desenvolvimento , Pulmão/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Fisiológica/efeitos dos fármacos , Pneumonectomia , Proteínas Recombinantes de Fusão/biossíntese , Testes de Função Respiratória , Transdução de Sinais/efeitos dos fármacos , Tensoativos/metabolismo , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
20.
J Clin Invest ; 128(9): 4025-4043, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30102256

RESUMO

Impaired lymphangiogenesis is a complication of chronic complex diseases, including diabetes. VEGF-C/VEGFR3 signaling promotes lymphangiogenesis, but how this pathway is affected in diabetes remains poorly understood. We previously demonstrated that loss of epsins 1 and 2 in lymphatic endothelial cells (LECs) prevented VEGF-C-induced VEGFR3 from endocytosis and degradation. Here, we report that diabetes attenuated VEGF-C-induced lymphangiogenesis in corneal micropocket and Matrigel plug assays in WT mice but not in mice with inducible lymphatic-specific deficiency of epsins 1 and 2 (LEC-iDKO). Consistently, LECs isolated from diabetic LEC-iDKO mice elevated in vitro proliferation, migration, and tube formation in response to VEGF-C over diabetic WT mice. Mechanistically, ROS produced in diabetes induced c-Src-dependent but VEGF-C-independent VEGFR3 phosphorylation, and upregulated epsins through the activation of transcription factor AP-1. Augmented epsins bound to and promoted degradation of newly synthesized VEGFR3 in the Golgi, resulting in reduced availability of VEGFR3 at the cell surface. Preclinically, the loss of lymphatic-specific epsins alleviated insufficient lymphangiogenesis and accelerated the resolution of tail edema in diabetic mice. Collectively, our studies indicate that inhibiting expression of epsins in diabetes protects VEGFR3 against degradation and ameliorates diabetes-triggered inhibition of lymphangiogenesis, thereby providing a novel potential therapeutic strategy to treat diabetic complications.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/deficiência , Diabetes Mellitus Experimental/metabolismo , Linfangiogênese/fisiologia , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/genética , Animais , Proteína Tirosina Quinase CSK , Diabetes Mellitus Experimental/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Proteólise , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Fator de Transcrição AP-1/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...