Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 7(10): e47121, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071728

RESUMO

Sequence-specific RNA binding proteins can induce the degradation of mRNAs through their ability to recruit proteins that trigger transcript destabilization. For example, Vts1p, the S. cerevisiae member of the Smaug family of RNA binding proteins, is thought to induce transcript decay by recruiting the Ccr4p-Pop2p-Not deadenylase complex to target mRNAs. The resulting deadenylation triggers transcript decapping followed by 5'-to-3' exonucleolytic decay. Here we show that the eIF4E-binding protein, Eap1p, is required for efficient degradation of Vts1p target transcripts and that this role involves the ability of Eap1p to interact with eIF4E. Eap1p does not stimulate deadenylation of Vts1p target transcripts but is instead involved in decapping. Eap1p interacts with Vts1p and mediates an indirect interaction between Vts1p and eIF4E. Taken together these data suggest a model whereby the interaction of Vts1p with Eap1p at target mRNAs stimulates decapping.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Ligação Proteica , Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética
2.
RNA ; 14(7): 1328-36, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18469165

RESUMO

The Smaug family of sequence-specific RNA binding proteins regulates mRNA translation and degradation by binding to consensus stem-loop structures in target mRNAs. Vts1p is a member of the Smaug protein family that regulates the stability of target transcripts in Saccharomyces cerevisiae. Here we focus on the mechanism of Vts1p-mediated mRNA decay. Using RNA reporters that recapitulate Vts1p-mediated decay in vivo, we demonstrate that Vts1p stimulates mRNA degradation through deadenylation mediated by the Ccr4p-Pop2p-Not deadenylase complex. We also show that Vts1p interacts with the Ccr4p-Pop2p-Not complex suggesting that Vts1p recruits the Ccr4p-Pop2p-Not deadenylase complex to target mRNAs, resulting in transcript decay. Following deadenylation Vts1p target transcripts are decapped and subsequently degraded by the 5'-to-3' exonuclease Xrn1p. Decapping and 5'-to-3' decay is thought to occur in foci known as P-bodies, and we provide evidence that Vts1p function may involve P-bodies. Taken together with previous work, these data suggest that Smaug family members employ a conserved mechanism to induce transcript degradation that involves recruitment of the Ccr4-Pop2-Not deadenylase to target mRNAs.


Assuntos
Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Complexos Multienzimáticos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA , Saccharomyces cerevisiae
3.
Mech Dev ; 122(12): 1300-9, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16274963

RESUMO

The early transcriptional hierarchy that subdivides the vertebrate hindbrain into seven to eight segments, the rhombomeres (r1-r8), is largely unknown. The Kreisler (MafB, Krml1, Val) gene is earliest gene expressed in an r5/r6-restricted manner and is essential for r5 and r6 development. We have identified the S5 regulatory element that directs early Kreisler expression in the future r5/r6 domain in 0-10 somite stage embryos. variant Hepatocyte Nuclear Factor 1 (vHNF1/HNF1beta/LF-3B) is transiently expressed in the r5/r6 domain of 0-10 somite stage embryos and a vHNF1binding site within this element is essential but not sufficient for r5/r6-specific expression. Thus, early inductive events that initiate Kreisler expression are clearly distinct from later-acting ones that modulate its expression levels. This site and some of the surrounding sequences are evolutionarily conserved in the genomic DNA upstream of the Kreisler gene among species as divergent as mouse, humans, and chickens. This provides the first evidence of a direct requirement for vHNF1 in initiation of Kreisler expression, suggests that the role of vHNF1 is evolutionarily conserved, and indicates that vHNF1 collaborates with other transcription factors, which independently bind to the S5 regulatory region, to establish the r5/r6 domain.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Fator 1 Nuclear de Hepatócito/fisiologia , Proteínas de Homeodomínio/fisiologia , Fator de Transcrição MafB/biossíntese , Fator de Transcrição MafB/genética , Rombencéfalo/embriologia , Animais , Sequência de Bases , Sítios de Ligação/genética , Diferenciação Celular/genética , Sequência Conservada , Elementos Facilitadores Genéticos , Variação Genética , Fator 1 Nuclear de Hepatócito/biossíntese , Fator 1 Nuclear de Hepatócito/genética , Proteínas de Homeodomínio/biossíntese , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Rombencéfalo/citologia , Rombencéfalo/metabolismo
4.
Mol Cancer Res ; 1(5): 402-9, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12651913

RESUMO

The yeast sir2 gene plays a central role in mediating gene silencing and DNA repair in this organism. The mouse sir2alpha gene is closely related to its yeast homologue and encodes a nuclear protein expressed at particularly high levels in embryonic stem (ES) cells. We used homologous recombination to create ES cells null for sir2alpha and found that these cells did not have elevated levels of acetylated histones and did not ectopically express silent genes. Unlike yeast sir2 mutants, our sir2alpha null ES cells had normal sensitivity to insults such as ionizing radiation and heat shock, and they were able to silence invading retroviruses normally. These sir2alpha null cells were able to differentiate in culture normally. Our results failed to provide evidence that the mammalian SIR2alpha protein plays a role in gene silencing and suggest that the physiological substrate(s) for the SIR2alpha deacetylase may be nuclear proteins other than histones.


Assuntos
Carcinoma Embrionário , Inativação Gênica/fisiologia , Sirtuínas/genética , Sirtuínas/metabolismo , Células-Tronco/fisiologia , Acetilação , Animais , Reparo do DNA/fisiologia , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Camundongos , Provírus/genética , Retroviridae/genética , Infecções por Retroviridae/genética , Sirtuína 1 , Células-Tronco/citologia , Células-Tronco/efeitos da radiação , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/metabolismo , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA