Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 175(6): e14088, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148205

RESUMO

Oilseed rape and other crops of Brassica napus have a high demand for boron (B). Boron deficiencies result in the inhibition of root growth, and eventually premature flower abortion. Understanding the genetic mechanisms underlying flower abortion in B-limiting conditions could provide the basis to enhance B-efficiency and prevent B-deficiency-related yield losses. In this study, we assessed transcriptomic responses to B-deficiency in diverse inflorescence tissues at multiple time points of soil-grown plants that were phenotypically unaffected by B-deficiency until early flowering. Whilst transcript levels of known B transporters were higher in B-deficient samples, these remained remarkably stable as the duration of B-deficiency increased. Meanwhile, GO-term enrichment analysis indicated a growing response resembling that of a pathogen or pest attack, escalating to a huge transcriptome response in shoot heads at mid-flowering. Grouping differentially expressed genes within this tissue into MapMan functional bins indicated enrichment of genes related to wounding, jasmonic acid and WRKY transcription factors. Individual candidate genes for controlling the "flowering-without-seed-setting" phenotype from within MapMan biotic stress bins include those of the metacaspase family, which have been implicated in orchestrating programmed cell death. Overall temporal expression patterns observed here imply a dynamic response to B-deficiency, first increasing expression of B transporters before recruiting various biotic stress-related pathways to coordinate targeted cell death, likely in response to as yet unidentified B-deficiency induced damage-associated molecular patterns (DAMPs). This response indicates new pathways to target and dissect to control B-deficiency-induced flower abortion and to develop more B-efficient crops.


Assuntos
Brassica napus , Transcriptoma , Transcriptoma/genética , Inflorescência/genética , Inflorescência/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Boro/metabolismo , Perfilação da Expressão Gênica , Proteínas de Membrana Transportadoras/metabolismo
2.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365336

RESUMO

Understanding the biological roles of root hairs is key to projecting their contributions to plant growth and to assess their relevance for plant breeding. The objective of this study was to assess the importance of root hairs for maize nutrition, carbon allocation and root gene expression in a field experiment. Applying wild type and root hairless rth3 maize grown on loam and sand, we examined the period of growth including 4-leaf, 9-leaf and tassel emergence stages, accompanied with a low precipitation rate. rth3 maize had lower shoot growth and lower total amounts of mineral nutrients than wild type, but the concentrations of mineral elements, root gene expression, or carbon allocation were largely unchanged. For these parameters, growth stage accounted for the main differences, followed by substrate. Substrate-related changes were pronounced during tassel emergence, where the concentrations of several elements in leaves as well as cell wall formation-related root gene expression and C allocation decreased. In conclusion, the presence of root hairs stimulated maize shoot growth and total nutrient uptake, but other parameters were more impacted by growth stage and soil texture. Further research should relate root hair functioning to the observed losses in maize productivity and growth efficiency.

4.
Biochem Soc Trans ; 49(3): 1133-1146, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34013353

RESUMO

Strikingly, evolution shaped similar tubular structures at the µm to mm scale in roots of sessile plants and in small intestines of mobile mammals to ensure an efficient transfer of essential nutrients from 'dead matter' into biota. These structures, named root hairs (RHs) in plants and villi in mammals, numerously stretch into the environment, and extremely enlarge root and intestine surfaces. They are believed to forage for nutrients, and mediate their uptake. While the conceptional understanding of plant RH function in hydromineral nutrition seems clear, experimental evidence presented in textbooks is restricted to a very limited number of reference-nutrients. Here, we make an element-by-element journey through the periodic table and link individual nutrient availabilities to the development, structure/shape and function of RHs. Based on recent developments in molecular biology and the identification of mutants differing in number, length or other shape-related characteristics of RHs in various plant species, we present comprehensive advances in (i) the physiological role of RHs for the uptake of specific nutrients, (ii) the developmental and morphological responses of RHs to element availability and (iii) RH-localized nutrient transport proteins. Our update identifies crucial roles of RHs for hydromineral nutrition, mostly under nutrient and/or water limiting conditions, and highlights the influence of certain mineral availabilities on early stages of RH development, suggesting that nutritional stimuli, as deficiencies in P, Mn or B, can even dominate over intrinsic developmental programs underlying RH differentiation.


Assuntos
Biomassa , Nutrientes/metabolismo , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química , Água/metabolismo , Animais , Transporte Biológico , Mamíferos/metabolismo , Microvilosidades/metabolismo , Raízes de Plantas/crescimento & desenvolvimento
5.
Physiol Plant ; 171(4): 809-822, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33481273

RESUMO

Boron (B) is an essential mineral element for plant growth, and the seed B pool of crops can be crucial when seedlings need to establish on low-B soils. To date, it is poorly understood how B accumulation in grain crops is genetically controlled. Here, we assessed the genotypic variation of the B concentration in grains of a spring barley (Hordeum vulgare L.) association panel that represents broad genetic diversity. We found a large genetic variation of the grain B concentration and detected in total 23 quantitative trait loci (QTLs) using genome-wide association mapping. HvNIP2;2/HvLsi6, encoding a potential B-transporting membrane protein, mapped closely to a major-effect QTL accounting for the largest proportion of grain B variation. Based on transport studies using heterologous expression systems and gene expression analysis, we demonstrate that HvNIP2;2/HvLsi6 represents a functional B channel and that expression variation in its transcript level associates with root and shoot B concentrations as well as with root dry mass formation under B-deficient conditions.


Assuntos
Hordeum , Boro , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Hordeum/genética , Fenótipo , Locos de Características Quantitativas/genética
6.
J Exp Bot ; 71(18): 5603-5614, 2020 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-32463450

RESUMO

Non-invasive X-ray computed tomography (XRCT) is increasingly used in rhizosphere research to visualize development of soil-root interfaces in situ. However, exposing living systems to X-rays can potentially impact their processes and metabolites. In order to evaluate these effects, we assessed the responses of rhizosphere processes 1 and 24 h after a low X-ray exposure (0.81 Gy). Changes in root gene expression patterns occurred 1 h after exposure with down-regulation of cell wall-, lipid metabolism-, and cell stress-related genes, but no differences remained after 24 h. At either time point, XRCT did not affect either root antioxidative enzyme activities or the composition of the rhizosphere bacterial microbiome and microbial growth parameters. The potential activities of leucine aminopeptidase and phosphomonoesterase were lower at 1 h, but did not differ from the control 24 h after exposure. A time delay of 24 h after a low X-ray exposure (0.81 Gy) was sufficient to reverse any effects on the observed rhizosphere systems. Our data suggest that before implementing novel experimental designs involving XRCT, a study on its impact on the investigated processes should be conducted.


Assuntos
Rizosfera , Microbiologia do Solo , Expressão Gênica , Raízes de Plantas , Tomografia Computadorizada por Raios X
7.
Plant Direct ; 3(6): e00143, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31245781

RESUMO

Major Intrinsic Proteins (MIP) are a family of channels facilitating the diffusion of water and/or small solutes across cellular membranes. X Intrinsic Proteins (XIP) form the least characterized MIP subfamily in vascular plants. XIPs are mostly impermeable to water but facilitate the diffusion of hydrogen peroxide, urea and boric acid when expressed in heterologous expression systems. However, their transport capabilities in planta and their impact on plant physiology are still unknown. Here, we demonstrated that overexpression of NtXIP1;1 in Nicotiana tabacum by the En2pPMA4 or the 35S CaMV promoter and in Arabidopsis, which does not contain any XIP gene, by the 35S CaMV promoter, resulted in boron (B)-deficiency symptoms such as death of the shoot apical meristem, infertile flowers, and puckered leaves. Leaf B concentrations in symptomatic tissues and B xylem sap concentrations were lower in the overexpressors than in control plants. Importantly, expression of NtXIP1;1 under the control of the AtNIP5;1 promoter complemented the B deficiency phenotype of the Atnip5;1 knockout mutant, defining its ability to act as a boric acid channel in planta. Protein quantification analysis revealed that NtXIP1;1 was predominantly expressed in young B-demanding tissues and induced under B-deficient conditions. Our results strongly suggest that NtXIP1;1 plays a role in B homeostasis and its tissue-specific expression critically contributes to the distribution of B within tobacco.

8.
Plant J ; 100(1): 68-82, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31148338

RESUMO

The sophisticated uptake and translocation regulation of the essential element boron (B) in plants is ensured by two transmembrane transporter families: the Nodulin26-like Intrinsic Protein (NIP) and BOR transporter family. Though the agriculturally important crop Brassica napus is highly sensitive to B deficiency, and NIPs and BORs have been suggested to be responsible for B efficiency in this species, functional information of these transporter subfamilies is extremely rare. Here, we molecularly characterized the NIP and BOR1 transporter family in the European winter-type cv. Darmor-PBY018. Our transport assays in the heterologous oocyte and yeast expression systems as well as in growth complementation assays in planta demonstrated B transport activity of NIP5, NIP6, NIP7 and BOR1 isoforms. Moreover, we provided functional and quantitative evidence that also members of the NIP2, NIP3 and NIP4 groups facilitate the transport of B. A detailed B- and tissue-dependent B-transporter expression map was generated by quantitative polymerase chain reaction. We showed that NIP5 isoforms are highly upregulated under B-deficient conditions in roots, but also in shoot tissues. Moreover, we detected transcripts of several B-permeable NIPs from various groups in floral tissues that contribute to the B distribution within the highly B deficiency-sensitive flowers.


Assuntos
Antiporters/metabolismo , Boro/metabolismo , Brassica napus/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Plantas/metabolismo , Antiporters/classificação , Antiporters/genética , Aquaporinas/classificação , Aquaporinas/genética , Aquaporinas/metabolismo , Transporte Biológico/genética , Brassica napus/classificação , Brassica napus/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/classificação , Proteínas de Membrana Transportadoras/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Especificidade da Espécie
9.
Plant Physiol ; 170(3): 1640-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26802038

RESUMO

Aquaporins (AQPs) are water channels allowing fast and passive diffusion of water across cell membranes. It was hypothesized that AQPs contribute to cell elongation processes by allowing water influx across the plasma membrane and the tonoplast to maintain adequate turgor pressure. Here, we report that, in Arabidopsis (Arabidopsis thaliana), the highly abundant tonoplast AQP isoforms AtTIP1;1, AtTIP1;2, and AtTIP2;1 facilitate the emergence of new lateral root primordia (LRPs). The number of lateral roots was strongly reduced in the triple tip mutant, whereas the single, double, and triple tip mutants showed no or minor reduction in growth of the main root. This phenotype was due to the retardation of LRP emergence. Live cell imaging revealed that tight spatiotemporal control of TIP abundance in the tonoplast of the different LRP cells is pivotal to mediating this developmental process. While lateral root emergence is correlated to a reduction of AtTIP1;1 and AtTIP1;2 protein levels in LRPs, expression of AtTIP2;1 is specifically needed in a restricted cell population at the base, then later at the flanks, of developing LRPs. Interestingly, the LRP emergence phenotype of the triple tip mutants could be fully rescued by expressing AtTIP2;1 under its native promoter. We conclude that TIP isoforms allow the spatial and temporal fine-tuning of cellular water transport, which is critically required during the highly regulated process of LRP morphogenesis and emergence.


Assuntos
Aquaporinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Vacúolos/metabolismo , Aquaporinas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Confocal , Mutação , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vacúolos/genética , Água/metabolismo
10.
Plant Physiol ; 158(3): 1220-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22214816

RESUMO

The leaf extracellular space contains several peptidases, most of which are of unknown function. We isolated cDNAs for two extracellular serine carboxypeptidase III genes from tobacco (Nicotiana tabacum), NtSCP1 and NtSCP2, belonging to a phylogenetic clade not yet functionally characterized in plants. NtSCP1 and NtSCP2 are orthologs derived from the two ancestors of tobacco. Reverse transcription-polymerase chain reaction analysis showed that NtSCP1 and NtSCP2 are expressed in root, stem, leaf, and flower tissues. Expression analysis of the ß-glucuronidase reporter gene fused to the NtSCP1 transcription promoter region confirmed this expression profile. Western blotting of NtSCP1 and expression of an NtSCP1-green fluorescent protein fusion protein showed that the protein is located in the extracellular space of tobacco leaves and culture cells. Purified His-tagged NtSCP1 had carboxypeptidase activity in vitro. Transgenic tobacco plants overexpressing NtSCP1 showed a reduced flower length due to a decrease in cell size. Etiolated seedlings of these transgenic plants had shorter hypocotyls. These data provide support for a role of an extracellular type III carboxypeptidase in the control of cell elongation.


Assuntos
Carboxipeptidases/metabolismo , Crescimento Celular , DNA de Plantas/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Carboxipeptidases/genética , Clonagem Molecular , Meios de Cultura/metabolismo , DNA Complementar/genética , DNA Complementar/metabolismo , DNA de Plantas/genética , Ativação Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Regulação da Expressão Gênica de Plantas , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Filogenia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/genética , Nicotiana/crescimento & desenvolvimento
11.
Plant J ; 66(2): 306-17, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21241387

RESUMO

Major intrinsic proteins (MIPs) transport water and uncharged solutes across membranes in all kingdoms of life. Recently, an uncharacterized MIP subfamily was identified in the genomes of plants and fungi and named X Intrinsic Proteins (XIPs). Here, we describe the genetic features, localization, expression, and functions of a group of Solanaceae XIPs. XIP cDNA and gDNA were cloned from tobacco, potato, tomato, and morning glory. A conserved sequence motif in the first intron of Solanaceae XIPs initiates an RNA-processing mechanism that results in two splice variants (α and ß). When transiently or stably expressed in tobacco plants, yellow fluorescent protein-tagged NtXIP1;1α and NtXIP1;1ß were both localized in the plasma membrane. Transgenic tobacco lines expressing NtXIP1;1-promoter-GUS constructs and RT-PCR studies showed that NtXIP1;1 was expressed in all organs. The NtXIP1;1 promoter was mainly active in cell layers facing the environment in all above-ground tissues. Heterologous expression of Solanaceae XIPs in Xenopus laevis oocytes and various Saccharomyces cerevisiae mutants demonstrated that these isoforms facilitate the transport of bulky solutes, such as glycerol, urea, and boric acid. In contrast, permeability for water was undetectable. These data suggest that XIPs function in the transport of uncharged solutes across the cell plasma membrane in specific plant tissues, including at the interface between the environment and external cell layers.


Assuntos
Aquaporinas/metabolismo , Proteínas de Plantas/metabolismo , Solanaceae/metabolismo , Animais , Aquaporinas/genética , Permeabilidade da Membrana Celular , Clonagem Molecular , Flores/química , Flores/metabolismo , Glicerol/metabolismo , Oócitos , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise de Sequência de Proteína , Solanaceae/genética , Ureia/metabolismo , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...