Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hippocampus ; 33(3): 150-160, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36786207

RESUMO

Over the last two decades, the definition of hippocampal area CA2 has evolved from Lorente de Nó's original Golgi-based morphological description with the discovery of specific CA2 gene expression markers. Exploiting the specificity of these molecules has allowed for the genetic dissection of CA2 structure and function in transgenic mice. With this change in criteria, the anatomical boundaries of the CA2 have expanded across the hippocampal axis but the CA2's full rostrocaudal extent is not consistently delineated across atlases. The Hippocampus Gene Expression Atlas (HGEA) provides a comprehensive map of 20 gene expression domains across the entire mouse hippocampus including the CA2. In this commentary, I will review the consensus gene expression patterns that demarcate the expanded CA2 boundaries in the HGEA. Using DropViz single-cell transcriptomics and Mouse Connectome Project connectomics data, I will then suggest potential differences in CA2 cell type heterogeneity and connectivity that may identify and characterize further CA2 subregions.


Assuntos
Conectoma , Hipocampo , Camundongos , Animais , Hipocampo/metabolismo , Lobo Temporal , Perfilação da Expressão Gênica , Camundongos Transgênicos , Expressão Gênica , Imageamento por Ressonância Magnética
2.
Nature ; 598(7879): 188-194, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616074

RESUMO

The cortico-basal ganglia-thalamo-cortical loop is one of the fundamental network motifs in the brain. Revealing its structural and functional organization is critical to understanding cognition, sensorimotor behaviour, and the natural history of many neurological and neuropsychiatric disorders. Classically, this network is conceptualized to contain three information channels: motor, limbic and associative1-4. Yet this three-channel view cannot explain the myriad functions of the basal ganglia. We previously subdivided the dorsal striatum into 29 functional domains on the basis of the topography of inputs from the entire cortex5. Here we map the multi-synaptic output pathways of these striatal domains through the globus pallidus external part (GPe), substantia nigra reticular part (SNr), thalamic nuclei and cortex. Accordingly, we identify 14 SNr and 36 GPe domains and a direct cortico-SNr projection. The striatonigral direct pathway displays a greater convergence of striatal inputs than the more parallel striatopallidal indirect pathway, although direct and indirect pathways originating from the same striatal domain ultimately converge onto the same postsynaptic SNr neurons. Following the SNr outputs, we delineate six domains in the parafascicular and ventromedial thalamic nuclei. Subsequently, we identify six parallel cortico-basal ganglia-thalamic subnetworks that sequentially transduce specific subsets of cortical information through every elemental node of the cortico-basal ganglia-thalamic loop. Thalamic domains relay this output back to the originating corticostriatal neurons of each subnetwork in a bona fide closed loop.


Assuntos
Gânglios da Base/citologia , Córtex Cerebral/citologia , Vias Neurais , Neurônios/citologia , Tálamo/citologia , Animais , Gânglios da Base/anatomia & histologia , Córtex Cerebral/anatomia & histologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tálamo/anatomia & histologia
3.
Nature ; 598(7879): 159-166, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34616071

RESUMO

An essential step toward understanding brain function is to establish a structural framework with cellular resolution on which multi-scale datasets spanning molecules, cells, circuits and systems can be integrated and interpreted1. Here, as part of the collaborative Brain Initiative Cell Census Network (BICCN), we derive a comprehensive cell type-based anatomical description of one exemplar brain structure, the mouse primary motor cortex, upper limb area (MOp-ul). Using genetic and viral labelling, barcoded anatomy resolved by sequencing, single-neuron reconstruction, whole-brain imaging and cloud-based neuroinformatics tools, we delineated the MOp-ul in 3D and refined its sublaminar organization. We defined around two dozen projection neuron types in the MOp-ul and derived an input-output wiring diagram, which will facilitate future analyses of motor control circuitry across molecular, cellular and system levels. This work provides a roadmap towards a comprehensive cellular-resolution description of mammalian brain architecture.


Assuntos
Córtex Motor/anatomia & histologia , Córtex Motor/citologia , Neurônios/classificação , Animais , Atlas como Assunto , Feminino , Neurônios GABAérgicos/citologia , Neurônios GABAérgicos/metabolismo , Glutamatos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroimagem , Neurônios/citologia , Neurônios/metabolismo , Especificidade de Órgãos , Análise de Sequência de RNA , Análise de Célula Única
4.
Nat Commun ; 12(1): 4004, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183678

RESUMO

The superior colliculus (SC) receives diverse and robust cortical inputs to drive a range of cognitive and sensorimotor behaviors. However, it remains unclear how descending cortical input arising from higher-order associative areas coordinate with SC sensorimotor networks to influence its outputs. Here, we construct a comprehensive map of all cortico-tectal projections and identify four collicular zones with differential cortical inputs: medial (SC.m), centromedial (SC.cm), centrolateral (SC.cl) and lateral (SC.l). Further, we delineate the distinctive brain-wide input/output organization of each collicular zone, assemble multiple parallel cortico-tecto-thalamic subnetworks, and identify the somatotopic map in the SC that displays distinguishable spatial properties from the somatotopic maps in the neocortex and basal ganglia. Finally, we characterize interactions between those cortico-tecto-thalamic and cortico-basal ganglia-thalamic subnetworks. This study provides a structural basis for understanding how SC is involved in integrating different sensory modalities, translating sensory information to motor command, and coordinating different actions in goal-directed behaviors.


Assuntos
Colículos Superiores/anatomia & histologia , Colículos Superiores/fisiologia , Visão Ocular/fisiologia , Percepção Visual/fisiologia , Animais , Gânglios da Base/fisiologia , Cognição/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Visuais
5.
Nat Commun ; 12(1): 2859, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001873

RESUMO

The basolateral amygdalar complex (BLA) is implicated in behaviors ranging from fear acquisition to addiction. Optogenetic methods have enabled the association of circuit-specific functions to uniquely connected BLA cell types. Thus, a systematic and detailed connectivity profile of BLA projection neurons to inform granular, cell type-specific interrogations is warranted. Here, we apply machine-learning based computational and informatics analysis techniques to the results of circuit-tracing experiments to create a foundational, comprehensive BLA connectivity map. The analyses identify three distinct domains within the anterior BLA (BLAa) that house target-specific projection neurons with distinguishable morphological features. We identify brain-wide targets of projection neurons in the three BLAa domains, as well as in the posterior BLA, ventral BLA, posterior basomedial, and lateral amygdalar nuclei. Inputs to each nucleus also are identified via retrograde tracing. The data suggests that connectionally unique, domain-specific BLAa neurons are associated with distinct behavior networks.


Assuntos
Potenciais de Ação/fisiologia , Complexo Nuclear Basolateral da Amígdala/fisiologia , Medo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Algoritmos , Animais , Complexo Nuclear Basolateral da Amígdala/citologia , Medo/psicologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Modelos Neurológicos , Rede Nervosa/citologia , Optogenética/métodos
6.
Sci Rep ; 11(1): 3729, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33580088

RESUMO

The subiculum is the major output component of the hippocampal formation and one of the major brain structures most affected by Alzheimer's disease. Our previous work revealed a hidden laminar architecture within the mouse subiculum. However, the rotation of the hippocampal longitudinal axis across species makes it unclear how the laminar organization is represented in human subiculum. Using in situ hybridization data from the Allen Human Brain Atlas, we demonstrate that the human subiculum also contains complementary laminar gene expression patterns similar to the mouse. In addition, we provide evidence that the molecular domain boundaries in human subiculum correspond to microstructural differences observed in high resolution MRI and fiber density imaging. Finally, we show both similarities and differences in the gene expression profile of subiculum pyramidal cells within homologous lamina. Overall, we present a new 3D model of the anatomical organization of human subiculum and its evolution from the mouse.


Assuntos
Hipocampo/metabolismo , Adulto , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Bases de Dados Factuais , Expressão Gênica/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Hipocampo/fisiologia , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Vias Neurais/metabolismo , Células Piramidais/metabolismo , Transcriptoma/genética
7.
J Comp Neurol ; 529(3): 576-594, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32511750

RESUMO

Here we present a flatmap of the mouse central nervous system (CNS) (brain) and substantially enhanced flatmaps of the rat and human brain. Also included are enhanced representations of nervous system white matter tracts, ganglia, and nerves, and an enhanced series of 10 flatmaps showing different stages of rat brain development. The adult mouse and rat brain flatmaps provide layered diagrammatic representation of CNS divisions, according to their arrangement in corresponding reference atlases: Brain Maps 4.0 (BM4, rat) (Swanson, The Journal of Comparative Neurology, 2018, 526, 935-943), and the first version of the Allen Reference Atlas (mouse) (Dong, The Allen reference atlas, (book + CD-ROM): A digital color brain atlas of the C57BL/6J male mouse, 2007). To facilitate comparative analysis, both flatmaps are scaled equally, and the divisional hierarchy of gray matter follows a topographic arrangement used in BM4. Also included with the mouse and rat brain flatmaps are cerebral cortex atlas level contours based on the reference atlases, and direct graphical and tabular comparison of regional parcellation. To encourage use of the brain flatmaps, they were designed and organized, with supporting reference tables, for ease-of-use and to be amenable to computational applications. We demonstrate how they can be adapted to represent novel parcellations resulting from experimental data, and we provide a proof-of-concept for how they could form the basis of a web-based graphical data viewer and analysis platform. The mouse, rat, and human brain flatmap vector graphics files (Adobe Reader/Acrobat viewable and Adobe Illustrator editable) and supporting tables are provided open access; they constitute a broadly applicable neuroscience toolbox resource for researchers seeking to map and perform comparative analysis of brain data.


Assuntos
Atlas como Assunto , Mapeamento Encefálico/métodos , Encéfalo/anatomia & histologia , Ilustração Médica , Publicação de Acesso Aberto , Animais , Humanos , Camundongos , Ratos , Especificidade da Espécie
8.
Nat Commun ; 10(1): 1549, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30948706

RESUMO

Characterizing the precise three-dimensional morphology and anatomical context of neurons is crucial for neuronal cell type classification and circuitry mapping. Recent advances in tissue clearing techniques and microscopy make it possible to obtain image stacks of intact, interweaving neuron clusters in brain tissues. As most current 3D neuronal morphology reconstruction methods are only applicable to single neurons, it remains challenging to reconstruct these clusters digitally. To advance the state of the art beyond these challenges, we propose a fast and robust method named G-Cut that is able to automatically segment individual neurons from an interweaving neuron cluster. Across various densely interconnected neuron clusters, G-Cut achieves significantly higher accuracies than other state-of-the-art algorithms. G-Cut is intended as a robust component in a high throughput informatics pipeline for large-scale brain mapping projects.


Assuntos
Mapeamento Encefálico/métodos , Simulação por Computador , Rede Nervosa , Neurônios/citologia , Algoritmos , Biologia Computacional , Modelos Teóricos , Neurônios/ultraestrutura
9.
J Comp Neurol ; 527(9): 1419-1442, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30620046

RESUMO

The mammalian visual system is one of the most well-studied brain systems. Visual information from the retina is relayed to the dorsal lateral geniculate nucleus of the thalamus (LGd). The LGd then projects topographically to primary visual cortex (VISp) to mediate visual perception. In this view, the VISp is a critical network hub where visual information must traverse LGd-VISp circuits to reach higher order "extrastriate" visual cortices, which surround the VISp on its medial and lateral borders. However, decades of conflicting reports in a variety of mammals support or refute the existence of extrastriate LGd connections that can bypass the VISp. Here, we provide evidence of bidirectional extrastriate connectivity with the mouse LGd. Using small, discrete coinjections of anterograde and retrograde tracers within the thalamus and cortex, our cross-validated approach identified bidirectional connectivity between LGd and extrastriate visual cortices. We find robust reciprocal connectivity of the medial extrastriate regions with LGd neurons distributed along the "ventral strip" border with the intergeniculate leaflet. In contrast, LGd input to lateral extrastriate regions is sparse, but lateral extrastriate regions return stronger descending projections to localized LGd areas. We show further evidence that axons from lateral extrastriate regions can overlap onto medial extrastriate-projecting LGd neurons in the ventral strip, providing a putative subcortical LGd pathway for communication between medial and lateral extrastriate regions. Overall, our findings support the existence of extrastriate LGd circuits and provide novel understanding of LGd organization in rodent visual system.


Assuntos
Corpos Geniculados/anatomia & histologia , Córtex Visual/anatomia & histologia , Vias Visuais/anatomia & histologia , Animais , Transporte Axonal , Conectoma , Corantes Fluorescentes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Percepção Visual/fisiologia
10.
Nat Neurosci ; 21(11): 1628-1643, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30297807

RESUMO

Understanding the organization of the hippocampus is fundamental to understanding brain function related to learning, memory, emotions, and diseases such as Alzheimer's disease. Physiological studies in humans and rodents have suggested that there is both structural and functional heterogeneity along the longitudinal axis of the hippocampus. However, the recent discovery of discrete gene expression domains in the mouse hippocampus has provided the opportunity to re-evaluate hippocampal connectivity. To integrate mouse hippocampal gene expression and connectivity, we mapped the distribution of distinct gene expression patterns in mouse hippocampus and subiculum to create the Hippocampus Gene Expression Atlas (HGEA). Notably, previously unknown subiculum gene expression patterns revealed a hidden laminar organization. Guided by the HGEA, we constructed the most detailed hippocampal connectome available using Mouse Connectome Project ( http://www.mouseconnectome.org ) tract tracing data. Our results define the hippocampus' multiscale network organization and elucidate each subnetwork's unique brain-wide connectivity patterns.


Assuntos
Encéfalo/fisiologia , Conectoma , Hipocampo/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Expressão Gênica , Camundongos , Vias Neurais/fisiologia
11.
Nat Neurosci ; 19(8): 1100-14, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27322419

RESUMO

Different cortical areas are organized into distinct intracortical subnetworks. The manner in which descending pathways from the entire cortex interact subcortically as a network remains unclear. We developed an open-access comprehensive mesoscale mouse cortico-striatal projectome: a detailed connectivity projection map from the entire cerebral cortex to the dorsal striatum or caudoputamen (CP) in rodents. On the basis of these projections, we used new computational neuroanatomical tools to identify 29 distinct functional striatal domains. Furthermore, we characterized different cortico-striatal networks and how they reconfigure across the rostral-caudal extent of the CP. The workflow was also applied to select cortico-striatal connections in two different mouse models of disconnection syndromes to demonstrate its utility for characterizing circuitry-specific connectopathies. Together, our results provide the structural basis for studying the functional diversity of the dorsal striatum and disruptions of cortico-basal ganglia networks across a broad range of disorders.


Assuntos
Gânglios da Base/fisiologia , Córtex Cerebral/fisiologia , Vias Neurais/fisiologia , Animais , Masculino , Camundongos Endogâmicos C57BL , Modelos Animais
12.
Cell ; 156(5): 1096-111, 2014 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-24581503

RESUMO

Numerous studies have examined the neuronal inputs and outputs of many areas within the mammalian cerebral cortex, but how these areas are organized into neural networks that communicate across the entire cortex is unclear. Over 600 labeled neuronal pathways acquired from tracer injections placed across the entire mouse neocortex enabled us to generate a cortical connectivity atlas. A total of 240 intracortical connections were manually reconstructed within a common neuroanatomic framework, forming a cortico-cortical connectivity map that facilitates comparison of connections from different cortical targets. Connectivity matrices were generated to provide an overview of all intracortical connections and subnetwork clusterings. The connectivity matrices and cortical map revealed that the entire cortex is organized into four somatic sensorimotor, two medial, and two lateral subnetworks that display unique topologies and can interact through select cortical areas. Together, these data provide a resource that can be used to further investigate cortical networks and their corresponding functions.


Assuntos
Córtex Cerebral/fisiologia , Conectoma , Camundongos/fisiologia , Vias Neurais , Animais , Comportamento Animal , Masculino , Camundongos Endogâmicos C57BL
13.
J Comp Neurol ; 521(15): 3406-31, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23640841

RESUMO

The central and medial extended amygdala comprises the central (CEA) and medial nuclei of the amygdala (MEA), respectively, together with anatomically connected regions of the bed nucleus of the stria terminalis (BST). To reveal direct and multisynaptic connections within the central and medial extended amygdala, monosynaptic and transneuronal viral tracing experiments were performed in adult male rats. In the first set of experiments, a cocktail of anterograde and retrograde tracers was iontophoretically delivered into the medial CEA (CEAm), anterodorsal MEA (MEAad), or posterodorsal MEA (MEApd), revealing direct, topographically organized projections between distinct amygdalar and BST subnuclei. In the second set of experiments, the retrograde transneuronal tracer pseudorabies virus (PRV) was microinjected into the CEAm or MEAad. After 48 hours of survival, there were no significant differences between monosynaptic and PRV cases in the subnuclear distribution or proportions of retrogradely labeled BST neurons. However, after 60 hours of survival, CEAm-injected cases displayed an increased proportion of labeled neurons within the anteromedial group of BST subnuclei (amgBST) and within the posterior BST, which do not directly innervate the CEA. MEApd-injected 60-hour cases displayed a significantly increased proportion of retrograde labeling in the amgBST compared with monosynaptic and 48-hour cases, whereas MEAad-injected cases displayed no proportional changes over time. Thus, multisynaptic circuits within the medial extended amygdala overlap the direct connections making up this anatomical unit, whereas the multisynaptic boundaries of the central extended amygdala extend into BST subnuclei previously identified as part of the medial extended amygdala.


Assuntos
Tonsila do Cerebelo/fisiologia , Rede Nervosa/fisiologia , Sinapses/fisiologia , Tonsila do Cerebelo/anatomia & histologia , Animais , Herpesvirus Suídeo 1 , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Iontoforese , Masculino , Rede Nervosa/anatomia & histologia , Ratos , Núcleos Septais/fisiologia
14.
Brain Struct Funct ; 218(1): 187-208, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22362201

RESUMO

The central nucleus of the amygdala (CEA) and lateral bed nucleus of stria terminalis (BST) are highly interconnected limbic forebrain regions that share similar connectivity with other brain regions that coordinate behavioral and physiological responses to internal and environmental stressors. Their similar connectivity is frequently referred to when describing the CEA and lateral BST together as a unified "central extended amygdala". However, the CEA and BST reportedly play distinct roles in behavioral and physiological responses associated with fear, anxiety, and social defeat, presumably due to differences in connectivity. To identify common and unique sources of input to the CEA and lateral BST, we performed dual retrograde tracing. Fluorogold and cholera toxin ß were iontophoresed into the medial CEA (CEAm) and the anterior ventrolateral BST (BSTvl) of adult male rats. The anatomical distribution of tracer-labeled neurons was mapped throughout the brain. Regions with overlapping populations of CEAm- and BSTvl-projecting neurons were further examined for the presence of double-labeled neurons. Although most regions with input to the mCEA also projected to the BSTvl, and vice versa, cortical and sensory system-related regions projected more robustly to the CEAm, while motor system-related regions primarily innervated the BSTvl. The incidence of double-labeled neurons with collateralized axonal inputs to the CEAm and BSTvl was relatively small (~2 to 13%) and varied across regions, suggesting regional differences in the degree of coordinated CEAm and BSTvl input. The demonstrated similarities and differences in inputs to CEAm and BSTvl provide new anatomical insights into the functional organization of these limbic forebrain regions.


Assuntos
Tonsila do Cerebelo/citologia , Neurônios/citologia , Núcleos Septais/citologia , Animais , Toxina da Cólera/administração & dosagem , Iontoforese , Masculino , Vias Neurais/citologia , Técnicas de Rastreamento Neuroanatômico , Marcadores do Trato Nervoso/administração & dosagem , Ratos , Ratos Sprague-Dawley , Estilbamidinas/administração & dosagem
15.
Physiol Behav ; 104(2): 257-65, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21402087

RESUMO

Hypothalamo-pituitary-adrenal (HPA) axis activation in response to infection is an important mechanism by which the nervous system can suppress inflammation. HPA output is controlled by the hypothalamic paraventricular nucleus (PVN). Previously, we determined that noradrenergic inputs to the PVN contribute to, but do not entirely account for, the ability of bacterial endotoxin (i.e., lipopolysacharide, LPS) to activate the HPA axis. The present study investigated LPS-induced recruitment of neural inputs to the ventrolateral bed nucleus of the stria terminalis (vlBNST). GABAergic projections from the vlBNST inhibit PVN neurons at the apex of the HPA axis; thus, we hypothesize that LPS treatment activates inhibitory inputs to the vlBNST to thereby "disinhibit" the PVN and increase HPA output. To test this hypothesis, retrograde neural tracer was iontophoretically delivered into the vlBNST of adult male rats to retrogradely label central sources of axonal input. After one week, rats were injected i.p. with either LPS (200 µg/kg BW) or saline vehicle, and then perfused with fixative 2.5h later. Brains were processed for immunohistochemical localization of retrograde tracer and the immediate-early gene product, Fos (a marker of neural activation). Brain regions that provide inhibitory input to the vlBNST (e.g., caudal nucleus of the solitary tract, central amygdala, dorsolateral BNST) were preferentially activated by LPS, whereas sources of excitatory input (e.g., paraventricular thalamus, medial prefrontal cortex) were not activated or were activated less robustly. These results suggest that LPS treatment recruits central neural systems that actively suppress vlBNST neural activity, thereby removing a potent source of inhibitory control over the HPA axis.


Assuntos
Lipopolissacarídeos/efeitos adversos , Vias Neurais/fisiologia , Neurônios/metabolismo , Núcleos Septais/efeitos dos fármacos , Animais , Toxina da Cólera/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Iontoforese/métodos , Masculino , Vias Neurais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Sprague-Dawley , Núcleos Septais/citologia , Estilbamidinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...