Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 115(19): 193903, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26588384

RESUMO

High order harmonics generated at relativistic intensities have long been recognized as a route to the most powerful extreme ultraviolet pulses. Reliably generating isolated attosecond pulses requires gating to only a single dominant optical cycle, but techniques developed for lower power lasers have not been readily transferable. We present a novel method to temporally gate attosecond pulse trains by combining noncollinear and polarization gating. This scheme uses a split beam configuration which allows pulse gating to be implemented at the high beam fluence typical of multi-TW to PW class laser systems. Scalings for the gate width demonstrate that isolated attosecond pulses are possible even for modest pulse durations achievable for existing and planned future ultrashort high-power laser systems. Experimental results demonstrating the spectral effects of temporal gating on harmonic spectra generated by a relativistic laser plasma interaction are shown.

2.
Rev Sci Instrum ; 84(2): 023101, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23464189

RESUMO

We report on the absolute sensitivity calibration of an extreme ultraviolet (XUV) spectrometer system that is frequently employed to study emission from short-pulse laser experiments. The XUV spectrometer, consisting of a toroidal mirror and a transmission grating, was characterized at a synchrotron source in respect of the ratio of the detected to the incident photon flux at photon energies ranging from 15.5 eV to 99 eV. The absolute calibration allows the determination of the XUV photon number emitted by laser-based XUV sources, e.g., high-harmonic generation from plasma surfaces or in gaseous media. We have demonstrated high-harmonic generation in gases and plasma surfaces providing 2.3 µW and µJ per harmonic using the respective generation mechanisms.

3.
Phys Rev Lett ; 109(12): 125002, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-23005951

RESUMO

Harmonic generation in the limit of ultrasteep density gradients is studied experimentally. Observations reveal that, while the efficient generation of high order harmonics from relativistic surfaces requires steep plasma density scale lengths (L(p)/λ < 1), the absolute efficiency of the harmonics declines for the steepest plasma density scale length L(p)→0, thus demonstrating that near-steplike density gradients can be achieved for interactions using high-contrast high-intensity laser pulses. Absolute photon yields are obtained using a calibrated detection system. The efficiency of harmonics reflected from the laser driven plasma surface via the relativistic oscillating mirror was estimated to be in the range of 10(-4)-10(-6) of the laser pulse energy for photon energies ranging from 20-40 eV, with the best results being obtained for an intermediate density scale length.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...