Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microsc Microanal ; 29(Supplement_1): 1994-1995, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37612918
2.
J Nanobiotechnology ; 21(1): 26, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36691056

RESUMO

Dinuclear copper complexes have been designed for molecular recognition in order to selectively bind to two neighboring phosphate moieties in the backbone of double strand DNA. Associated biophysical, biochemical and cytotoxic effects on DNA were investigated in previous works, where atomic force microscopy (AFM) in ambient conditions turned out to be a particular valuable asset, since the complexes influence the macromechanical properties and configurations of the strands. To investigate and scrutinize these effects in more depth from a structural point of view, cutting-edge preparation methods and scanning force microscopy under ultra-high vacuum (UHV) conditions were employed to yield submolecular resolution images. DNA strand mechanics and interactions could be resolved on the single base pair level, including the amplified formation of melting bubbles. Even the interaction of singular complex molecules could be observed. To better assess the results, the appearance of treated DNA is also compared to the behavior of untreated DNA in UHV on different substrates. Finally, we present data from a statistical simulation reasoning about the nanomechanics of strand dissociation. This sort of quantitative experimental insights paralleled by statistical simulations impressively shade light on the rationale for strand dissociations of this novel DNA interaction process, that is an important nanomechanistic key and novel approach for the development of new chemotherapeutic agents.


Assuntos
DNA , Desnaturação de Ácido Nucleico , DNA/química , Pareamento de Bases , Microscopia de Força Atômica/métodos
3.
ACS Appl Mater Interfaces ; 14(43): 49181-49188, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36256601

RESUMO

In this work, palladium-loaded smart membranes made by UV cross-linking of thermoresponsive microgels are prepared to obtain a reusable, catalytically active material which can, for example, be implemented in chemical reactors. The membranes are examined with respect to their coverage of a supporting mesh via atomic force microscopy measurements. Force indentation mapping was performed in the dried, collapsed state and in the swollen state in water to determine the Young modulus. Furthermore, we compare the catalytic activity of the membrane with the corresponding suspended colloidal nanoparticle microgel hybrids. For this purpose, the reduction of 4-nitrophenol is an established model reaction to quantify the catalytic activity by UV-vis spectroscopy. The membrane is embedded inside a continuous stirred tank reactor equipped for continuous monitoring of the reaction progress. Although catalysis with membranes shows lower catalytic activity than freely dispersed particles, membranes allow straightforward separation and recycling of the catalyst. The fabricated membranes in this work show no decrease in catalytic activity between several cycles, unlike free particles. The feasible and durable deposition of catalytically active inter-cross-linked microgel particles on commercial nylon meshes as supporting scaffolds, as demonstrated in this work, is promising for up-scaling of continuous industrial processes.

4.
Nature ; 609(7925): 58-64, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045237

RESUMO

Polymer membranes are widely used in separation processes including desalination1, organic solvent nanofiltration2,3 and crude oil fractionation4,5. Nevertheless, direct evidence of subnanometre pores and a feasible method of manipulating their size is still challenging because of the molecular fluctuations of poorly defined voids in polymers6. Macrocycles with intrinsic cavities could potentially tackle this challenge. However, unfunctionalized macrocycles with indistinguishable reactivities tend towards disordered packing in films hundreds of nanometres thick7-9, hindering cavity interconnection and formation of through-pores. Here, we synthesized selectively functionalized macrocycles with differentiated reactivities that preferentially aligned to create well-defined pores across an ultrathin nanofilm. The ordered structure was enhanced by reducing the nanofilm thickness down to several nanometres. This orientated architecture enabled direct visualization of subnanometre macrocycle pores in the nanofilm surfaces, with the size tailored to ångström precision by varying the macrocycle identity. Aligned macrocycle membranes provided twice the methanol permeance and higher selectivity compared to disordered counterparts. Used in high-value separations, exemplified here by enriching cannabidiol oil, they achieved one order of magnitude faster ethanol transport and threefold higher enrichment than commercial state-of-the-art membranes. This approach offers a feasible strategy for creating subnanometre channels in polymer membranes, and demonstrates their potential for accurate molecular separations.

5.
Beilstein J Nanotechnol ; 13: 462-471, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673603

RESUMO

Ultrathin membranes with subnanometer pores enabling molecular size-selective separation were generated on surfaces via electron-induced cross-linking of self-assembled monolayers (SAMs). The evolution of p-terphenylthiol (TPT) SAMs on Au(111) surfaces into cross-linked monolayers was observed with a scanning tunneling microscope. As the irradiation dose was increased, the cross-linked regions continued to grow and a large number of subnanometer voids appeared. Their equivalent diameter is 0.5 ± 0.2 nm and the areal density is ≈1.7 × 1017 m-2. Supported by classical molecular dynamics simulations, we propose that these voids may correspond to free volumes inside a cross-linked monolayer.

6.
Adv Mater ; 32(8): e1907850, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31945240

RESUMO

The collective "single-file" motion of water molecules through natural and artificial nanoconduits inspires the development of high-performance membranes for water separation. However, a material that contains a large number of pores combining rapid water flow with superior ion rejection is still highly desirable. Here, a 1.2 nm thick carbon nanomembrane (CNM) made from cross-linking of terphenylthiol (TPT) self-assembled monolayers is reported to possess these properties. Utilizing their extremely high pore density of 1 sub-nm channel nm-2 , TPT CNMs let water molecules rapidly pass, while the translocation of ions, including protons, is efficiently hindered. Their membrane resistance reaches ≈104 Ω cm2 in 1 m Cl- solutions, comparable to lipid bilayers of a cell membrane. Consequently, a single CNM channel yields an ≈108 higher resistance than pores in lipid membrane channels and carbon nanotubes. The ultrahigh ionic exclusion by CNMs is likely dominated by a steric hindrance mechanism, coupled with electrostatic repulsion and entrance effects. The operation of TPT CNM membrane composites in forward osmosis is also demonstrated. These observations highlight the potential of utilizing CNMs for water purification and opens up a simple avenue to creating 2D membranes through molecular self-assembly for highly selective and fast separations.

7.
Int J Mol Sci ; 20(22)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739438

RESUMO

Recombinant adeno-associated viruses (rAAV) provide outstanding options for customization and superior capabilities for gene therapy. To access their full potential, facile genetic manipulation is pivotal, including capsid loop modifications. Therefore, we assessed capsid tolerance to modifications of the structural VP proteins in terms of stability and plasticity. Flexible glycine-serine linkers of increasing sizes were, at the genetic level, introduced into the 587 loop region of the VP proteins of serotype 2, the best studied AAV representative. Analyses of biological function and thermal stability with respect to genome release of viral particles revealed structural plasticity. In addition, insertion of the 29 kDa enzyme ß-lactamase into the loop region was tested with a complete or a mosaic modification setting. For the mosaic approach, investigation of VP2 trans expression revealed that a Kozak sequence was required to prevent leaky scanning. Surprisingly, even the full capsid modification with ß-lactamase allowed for the assembly of capsids with a concomitant increase in size. Enzyme activity assays revealed lactamase functionality for both rAAV variants, which demonstrates the structural robustness of this platform technology.


Assuntos
Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Dependovirus/genética , Engenharia Genética , Mutação , Conformação Proteica , Proteínas Recombinantes de Fusão , DNA Viral , Dependovirus/ultraestrutura , Regulação Viral da Expressão Gênica , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Humanos , Imageamento Tridimensional , Modelos Moleculares , Relação Estrutura-Atividade , Sequências Repetidas Terminais , Transdução Genética , Vírion/química
8.
J Integr Bioinform ; 15(2)2018 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-30001212

RESUMO

The structural modeling and representation of cells is a complex task as different microscopic, spectroscopic and other information resources have to be combined to achieve a three-dimensional representation with high accuracy. Moreover, to provide an appropriate spatial representation of the cell, a stereoscopic 3D (S3D) visualization is favorable. In this work, a structural cell model is created by combining information from various light microscopic and electron microscopic images as well as from publication-related data. At the mesoscopic level each cell component is presented with special structural and visual properties; at the molecular level a cell membrane composition and the underlying modeling method are discussed; and structural information is correlated with those at the functional level (represented by simplified energy-producing metabolic pathways). The organism used as an example is the unicellular Chlamydomonas reinhardtii, which might be important in future alternative energy production processes. Based on the 3D model, an educative S3D animation was created which was shown at conferences. The complete workflow was accomplished by using the open source 3D modeling software Blender. The discussed project including the animation is available from: http://Cm5.CELLmicrocosmos.org.


Assuntos
Membrana Celular/química , Chlamydomonas reinhardtii/química , Heurística , Imageamento Tridimensional/métodos , Software , Fenômenos Fisiológicos Celulares , Chlamydomonas reinhardtii/citologia
9.
ACS Nano ; 12(5): 4695-4701, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29741359

RESUMO

The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10-4 mol·m-2·s-1·Pa-1, as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s-1·Pa-1. This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.

10.
J Mol Cell Cardiol ; 91: 207-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26724190

RESUMO

BACKGROUND: Dilated cardiomyopathy (DCM) could be caused by mutations in more than 40 different genes. However, the pathogenic impact of specific mutations is in most cases unknown complicating the genetic counseling of affected families. Therefore, functional studies could contribute to distinguish pathogenic mutations and benign variants. Here, we present a novel heterozygous DES missense variant (c.407C>T; p.L136P) identified by next generation sequencing in a DCM patient. DES encodes the cardiac intermediate filament protein desmin, which has important functions in mechanical stabilization and linkage of the cell structures in cardiomyocytes. METHODS AND RESULTS: Cell transfection experiments and assembly assays of recombinant desmin in combination with atomic force microscopy were used to investigate the impact of this novel DES variant on filament formation. Desmin-p.L136P forms cytoplasmic aggregates indicating a severe intrinsic filament assembly defect of this mutant. Co-transfection experiments of wild-type and mutant desmin conjugated to different fluorescence proteins revealed a dominant affect of this mutant on filament assembly. These experiments were complemented by apertureless scanning near-field optical microscopy. CONCLUSION: In vitro analysis demonstrated that desmin-p.L136P is unable to form regular filaments and accumulate instead within the cytoplasm. Therefore, we classified DES-p.L136P as a likely pathogenic mutation. In conclusion, the functional characterization of DES-p.L136P might have relevance for the genetic counseling of affected families with similar DES mutations and could contribute to distinguish pathogenic mutations from benign rare variants.


Assuntos
Cardiomiopatia Dilatada/genética , Desmina/genética , Filamentos Intermediários/metabolismo , Mutação de Sentido Incorreto , Proteínas Recombinantes de Fusão/genética , Sequência de Aminoácidos , Cardiomiopatia Dilatada/metabolismo , Cardiomiopatia Dilatada/patologia , Desmina/química , Desmina/metabolismo , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Feminino , Expressão Gênica , Genes Dominantes , Aconselhamento Genético , Células HEK293 , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filamentos Intermediários/ultraestrutura , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Dados de Sequência Molecular , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/ultraestrutura , Linhagem , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...