Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(46): 21016-21021, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36374186

RESUMO

The prediction, identification, and characterization of phases away from equilibrium conditions remain difficult challenges for material science. Herein, we demonstrate how systems whose phase diagrams contain deeply incising eutectics can offer opportunities to address these challenges. We report the synthesis of a new compound in the Au-Si system, a textbook example of a system with a deep eutectic. Au4Si crystallizes in a complex √18×√2×1 superstructure of the PtHg4 type, based on the distortion of vertex-sharing Si@Au8 cubes into bisdisphenoids. Au4Si decomposes upon heating and at room temperature even in high vacuum, highlighting its metastability. Electronic structure analysis reveals a pseudogap at the Fermi energy, which is enhanced by the superstructure through the relief of Au-Au antibonding interactions. The pseudogap is associated with a Zintl-type bonding scheme, which can be extended to the locally ordered liquid. These results highlight the potential for metastable phases to form in deep eutectics that preserve the local structures of the liquid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...