Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(8): 3131-3143, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38598683

RESUMO

We propose a state-averaged orbital optimization scheme for improving the accuracy of excited states of the electronic structure Hamiltonian for use on near-term quantum computers. Instead of parameterizing the orbital rotation operator in the conventional fashion as an exponential of an antihermitian matrix, we parameterize the orbital rotation as a general partial unitary matrix. Whereas conventional orbital optimization methods minimize the state-averaged energy using successive Newton steps of the second-order Taylor expansion of the energy, the method presented here optimizes the state-averaged energy using an orthogonally constrained gradient projection method that does not require any expansion approximations. Through extensive benchmarking of the method on various small molecular systems, we find that the method is capable of producing more accurate results than fixed basis FCI while simultaneously using fewer qubits. In particular, we show that for H2, the method is capable of matching the accuracy of FCI in the cc-pVTZ basis (56 qubits) while only using 14 qubits.

2.
J Chem Theory Comput ; 19(3): 790-798, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36696487

RESUMO

Near-term quantum computers will be limited in the number of qubits on which they can process information as well as the depth of the circuits that they can coherently carry out. To date, experimental demonstrations of algorithms such as the Variational Quantum Eigensolver (VQE) have been limited to small molecules using minimal basis sets for this reason. In this work we propose incorporating an orbital optimization scheme into quantum eigensolvers wherein a parametrized partial unitary transformation is applied to the basis functions set in order to reduce the number of qubits required for a given problem. The optimal transformation is found by minimizing the ground state energy with respect to this partial unitary matrix. Through numerical simulations of small molecules up to 16 spin orbitals, we demonstrate that this method has the ability to greatly extend the capabilities of near-term quantum computers with regard to the electronic structure problem. We find that VQE paired with orbital optimization consistently achieves lower ground state energies than traditional VQE when using the same number of qubits and even frequently achieves lower ground state energies than VQE methods using more qubits.

3.
J Chem Theory Comput ; 18(8): 4674-4689, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35876650

RESUMO

We propose a quantum-classical hybrid variational algorithm, the quantum orbital minimization method (qOMM), for obtaining the ground state and low-lying excited states of a Hermitian operator. Given parametrized ansatz circuits representing eigenstates, qOMM implements quantum circuits to represent the objective function in the orbital minimization method and adopts a classical optimizer to minimize the objective function with respect to the parameters in ansatz circuits. The objective function has an orthogonality constraint implicitly embedded, which allows qOMM to apply a different ansatz circuit to each input reference state. We carry out numerical simulations that seek to find excited states of H2, LiH, and a toy model consisting of four hydrogen atoms arranged in a square lattice in the STO-3G basis with UCCSD ansatz circuits. Comparing the numerical results with existing excited states methods, qOMM is less prone to getting stuck in local minima and can achieve convergence with more shallow ansatz circuits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA