Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 58: 59-66, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29413458

RESUMO

BACKGROUND: For the evaluation of macromolecular drug delivery systems suitable pre-clinical monitoring of potential nanocarrier systems is needed. In this regard, both short-term as well as long-term in vivo tracking is crucial to understand structure-property relationships of polymer carrier systems and their resulting pharmacokinetic profile. Based on former studies revealing favorable in vivo characteristics for 18F-labeled random (ran) copolymers consisting of N-(2-hydroxypropyl)methacrylamide (HPMA) and lauryl methacrylate (LMA) - including prolonged plasma half-life as well as enhanced tumor accumulation - the presented work focuses on their long-term investigation in the living organism. METHODS: In this respect, four different HPMA-based polymers (homopolymers as well as random copolymers with LMA as hydrophobic segment) were synthesized and subsequent radioactive labeling was accomplished via the longer-lived radioisotope 131I. In vivo results, concentrating on the pharmacokinetics of a high molecular weight HPMA-ran-LMA copolymer, were obtained by means of biodistribution and metabolism studies in the Walker 256 mammary carcinoma model over a time-span of up to three days. Besides, a direct comparison with the 18F-radiolabeled polymer was drawn. To consider physico-chemical differences between the differently labeled polymer (18F or 131I) on the critical micelle concentration (CMC) and the size of the polymeric micelles, those properties were determined using the 19F- or 127I-functionalized polymer. Special emphasis was laid on the time-dependent correlation between blood circulation properties and corresponding tumor accumulation, particularly regarding the enhanced permeability and retention (EPR) effect. RESULTS: Studies revealed, at first, differences in the short time (2h) body distribution, despite the very similar properties (molecular structure, CMC and size of the micellar aggregates) of the non-radioactive 19F- and 127I-functionalized polymers. Long-term investigations with the 131I-labeled polymer demonstrated that, despite a polymer clearance from the blood within 72h, there was still an increase in tumor uptake observed over time. Regarding the stability of the 131I-label, ex vivo biodistribution experiments, considering the uptake in the thyroid, indicated low metabolism rates. CONCLUSION: The observed in vivo characteristics strongly underline the EPR effect. The findings illustrate the need to combine information of different labeling approaches and in vivo evaluation techniques to generate an overall pharmacokinetic picture of potential nanocarriers in the pre-clinical setting. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENTS: The in vivo behavior of the investigated HPMA-ran-LMA copolymer demonstrates great potential in terms of an effective accumulation in the tumor.


Assuntos
Radioisótopos do Iodo , Ácidos Láuricos/química , Ácidos Láuricos/farmacocinética , Metacrilatos/química , Metacrilatos/farmacocinética , Polímeros/química , Polímeros/farmacocinética , Animais , Linhagem Celular Tumoral , Marcação por Isótopo , Ácidos Láuricos/metabolismo , Metacrilatos/metabolismo , Polímeros/metabolismo , Ratos , Distribuição Tecidual
2.
Nucl Med Biol ; 39(4): 502-8, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22172387

RESUMO

Bone metastases are a major problem in several tumor entities affecting the therapeutic decision and the patient's prognosis. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) are promising techniques for identifying bone tumors using gamma- or positron-emitting labeled radiotracers, but the same tracers if labeled with beta-emitters may also be used to apply therapeutic radionuclides for localized irradiation. For the tracer development specifically accumulating in osseous lesions, animal models of bone metastasis are needed. A technique was developed for tumor cell injection into the circulation of the hind limb of rats. For tumor implantation, the arteria epigastrica caudalis superficialis (a branch of the femoral artery) was cannulated, and 2×10(5) cells were injected. By using the allogenic Walker 256 mammary carcinoma cell line, isolated bone metastases were induced. For visualizing of the tumor growth, PET with 18F-fluoride was performed weekly on a µ-PET system. After 2-3 weeks, tumor invasion was confirmed by histology. Three weeks after tumor cell inoculation, PET images showed signs of bone metastases in 9 out of 11 animals. The tumors were located either in the proximal tibia/fibula or in the distal femur. At this time, the animals showed no restrictions in mobility. The tumors grew constantly over time. The final histological analysis showed tumors growing invasively into the bone matrix. With this model, new SPECT or PET tracers can be evaluated for their potency of accumulating in bone metastases in vivo and to determine which are therefore suitable for diagnosis and/or therapy.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias Ósseas/cirurgia , Modelos Animais de Doenças , Medicina Nuclear/métodos , Transplante Homólogo/métodos , Animais , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Masculino , Tomografia por Emissão de Pósitrons , Ratos , Ratos Wistar
3.
Biomacromolecules ; 12(7): 2841-9, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21692523

RESUMO

There is a recognized need to create well-defined polymer probes for in vivo and clinical positron emission tomography (PET) imaging to guide the development of new generation polymer therapeutics. Using the RAFT polymerization technique in combination with the reactive ester approach, here we have synthesized well-defined and narrowly distributed N-(2-hydroxypropyl)methacrylamide homopolymers (pHPMA) (P1* and P2*) and random HPMA copolymers consisting of hydrophilic HPMA and hydrophobic lauryl methacrylate comonomers (P3* and P4*). The polymers had molecular weights below (P1* and P3*) and above the renal threshold (P2* and P4*). Whereas the homopolymers dissolve in isotonic solution as individual coils, the random copolymers form larger aggregates above their critical micelle concentration (∼ 40 nm), as determined by fluorescence correlation spectroscopy. Structure-property relationships of the pharmacokinetics and biodistribution of the different polymer architectures were monitored in the living organism following radiolabeling with the positron emitter (18)F via fluoroethylation within a few hours. Ex vivo organ biodistribution and in vivo µPET imaging studies in male Copenhagen rats revealed that both size and the nature of the aggregate formation (hydrophobically modified copolymers) played a major role in blood clearance and biodistribution, especially concerning liver and kidney accumulation. The high-molecular-weight random copolymer P4* (hydrophobically modified), in particular, combines low liver uptake with enhanced blood circulation properties, showing the potential of hydrophobic interactions, as seen for the represented model system, that are valuable for future drug carrier design.


Assuntos
Metacrilatos/química , Polímeros/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Estrutura Molecular , Peso Molecular , Polímeros/síntese química , Polímeros/química , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Estereoisomerismo , Distribuição Tecidual
4.
Cancer Res ; 71(12): 4214-25, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21546569

RESUMO

VEGF antagonists are now widely used cancer therapeutics, but predictive biomarkers of response or toxicity remain unavailable. In this study, we analyzed the effects of anti-VEGF therapy on tumor metabolism and therapeutic response by using an integrated set of imaging techniques, including bioluminescence metabolic imaging, 18-fluorodeoxyglucose positron emission tomography, and MRI imaging and spectroscopy. Our results revealed that anti-VEGF therapy caused a dramatic depletion of glucose and an exhaustion of ATP levels in tumors, although glucose uptake was maintained. These metabolic changes selectively accompanied the presence of large necrotic areas and partial tumor regression in highly glycolytic tumors. In addition, we found that the central metabolic protein kinase AMP-activated protein kinase (AMPK)-a cellular sensor of ATP levels that supports cell viability in response to energy stress-was activated by anti-VEGF therapy in experimental tumors. AMPK-α2 attenuation increased glucose consumption, tumor cell sensitivity to glucose starvation, and tumor necrosis following anti-VEGF therapy. Taken together, our findings reveal functional links between the Warburg effect and the AMPK pathway with therapeutic responses to VEGF neutralization in tumor xenograft models.


Assuntos
Adenilato Quinase/fisiologia , Glicólise , Neoplasias Experimentais/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Fluordesoxiglucose F18/farmacocinética , Humanos , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Camundongos , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...