Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(11): 113526, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461429

RESUMO

To fulfill the increasing needs of diagnostic support for researchers in plasma technology, a portable diagnostic package (PDP) equipped for both laser Thomson scattering (TS) and optical emission spectroscopy has been designed and constructed at Oak Ridge National Laboratory (ORNL), aiming to measure the temperature and number density of electrons and temperatures of ions in plasma devices. The PDP has been initially implemented on a high density and low temperature electrothermal arc source (ET-arc) at ORNL to test its TS capability. TS from the plasmas in the ET-arc has been obtained using the PDP. The electron temperature and number density were determined from TS spectra. These results were then compared to measurements from previous studies on the ET-arc. The TS diagnostic measured 0.8 ± 0.1, 1.3 ± 0.2, and 0.7 ± 0.1 eV and (4.4 ± 0.5) × 1021, (5.9 ± 0.7) × 1021, and (4.3 ± 0.5) x 1021 m-3, respectively, from three lines of sight that transect the plasma column.

2.
Rev Sci Instrum ; 93(11): 113506, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461530

RESUMO

An Advanced Research Projects Agency-Energy funded diagnostic system has been deployed to the Princeton field-reversed configuration 2 (PFRC-2) device, located at Princeton Plasma Physics Laboratory. The Portable Diagnostic Package (PDP), designed at Oak Ridge National Laboratory, allows for the measurement of Thomson Scattering (TS) for electron density and temperature and Optical Emission Spectroscopy (OES) for ion temperature, impurity density, and ion velocity. A tunable spectrometer on the PDP with three gratings provides the flexibility to measure low (1 eV) and high (1000 eV) electron temperature ranges from TS. Additionally, using a second spectrometer, the OES diagnostic can survey light emission from various ion excitation levels for wide wavelength ranges. The electron density (<2 × 1019 m-3) of plasmas generated in PFRC-2 has been below the PDP TS discrimination threshold, which has made TS signal detection challenging against a high-background of laser stray light. The laser stray light was iteratively reduced by making modifications to the entrance and exit geometry on PFRC-2. Rayleigh scattering experiments on PFRC have yielded the TS discrimination sensitivity to be >1 × 1020 m-3 for the PDP. A recently implemented narrow-band notch spectral filter that masks the second harmonic 532 nm Nd:YAG laser wavelength has increased the system's TS light discrimination sensitivity 65 times compared to the instance when the notch filter was not implemented. The hardware implementation including design changes to the flight tubes and Brewster windows will be discussed, along with results from Rayleigh and rotational Raman scattering sensitivity analyses, which were used to establish a quantitative figure of merit on the system performance. The Raman scattering calibration with the notch filter has improved the PDP electron density threshold to 1 ± 0.5 × 1018 m-3.

3.
Rev Sci Instrum ; 92(6): 063002, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243554

RESUMO

A diagnostic system, which has a design goal of high-portability, has been designed at Oak Ridge National Laboratory (ORNL). This project aims at providing measurements of key plasma parameters (ne, Te, ni, Ti) for fusion-relevant devices, utilizing Thomson scattering (TS) and optical emission spectroscopy (OES). The innovative design employs mostly commercial off-the-shelf instrumentation and a traveling team of researchers to conduct measurements at various magnetic-confinement plasma devices. The TS diagnostic uses a Quantel Q-smart 1500 Nd:YAG laser with a 2ω harmonic generator to produce up to 850 mJ of 532 nm laser pulses at 10 Hz. Collection optics placed at the detection port consists of an 11 × 3 optical fiber bundle, where the TS diagnostic uses an 11 × 1 subset array of the fibers, the OES diagnostic uses another 11 fibers, and the remaining fibers are available to the host institution. The detection system is comprised of two separate IsoPlane-320 spectrometers with triple-grating turrets of various line spacing and two PI-MAX 4 intensified CCD detectors, used simultaneously to measure a broad range of ion, impurity, and electron parameters. The self-contained diagnostic package also includes a data processing and storage system. The design and initial implementation of the TS-OES diagnostic system are described. The experiments from the proof-of-principle operation of the portable package on a high density (∼2.5 × 1022 m-3) and low-temperature (∼5 eV) electrothermal arc source at ORNL are also discussed.

4.
Rev Sci Instrum ; 92(3): 033517, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33819983

RESUMO

Digital holography has been proposed to fulfill a need for an imaging diagnostic capable of in situ monitoring of surface erosion caused by plasma-material interaction in nuclear fusion devices. A digital holography diagnostic for 3D surface erosion measurement has been developed at Oak Ridge National Laboratory with the goal of deployment on a plasma device. A proof-of-concept in situ demonstration is planned which would involve measurement of plasma erosion on targets exposed to an electrothermal arc source. This work presents the results of an ex situ characterization of the capability and limitations of holographic imaging of targets exposed to the arc source. Targets were designed to provide a fiducial for comparison of deformed and unaffected areas. The results indicated that the average net erosion was ∼150 nm/plasma exposure, which is expected to be within the diagnostic's measurement capacity. Surface roughness averages determined by holographic image analysis showed good agreement with measurements taken with a profilometer. The limit of the holography diagnostic's x-y spatial resolution was characterized by comparison with scanning electron microscope imaging.

5.
Rev Sci Instrum ; 92(3): 033504, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33820073

RESUMO

There are currently few viable diagnostic techniques for in situ measurement of plasma facing component erosion. Digital holography is intended to fill this gap. Progress on the development of single and dual CO2 laser digital holography diagnostics for in situ plasma facing component erosion is discussed. The dual laser mode's synthetic wavelength allows the measurable range to be expanded by a factor of ∼400 compared to single laser digital holography. This allows the diagnostic to measure surface height changes of up to 4.5 µm in single laser mode and up to 2 mm in dual laser mode. Results include ex situ measurements of plasma eroded targets and also dynamic measurements of nm and µm scale motion of a target mounted on a precision translation stage. Dynamic measurements have successfully been made with the system operating in both single and dual laser modes, from ∼50 nm to ∼4 µm in single laser mode and up to ∼400 µm in dual laser mode (limited only by the stage speed and camera acquisition duration). These results demonstrate the feasibility of using digital holography to characterize plasma facing component erosion dynamically, i.e., during plasma exposure. Results of proof-of-principle in situ digital holographic measurements of targets exposed to an electrothermal arc plasma source are presented.

6.
Rev Sci Instrum ; 91(2): 026104, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32113407

RESUMO

We have demonstrated a vacuum suitcase to transport samples in vacuo to a surface analysis station for characterization of tokamak plasma facing components (PFCs). This technique enables surface analysis at powerful, dedicated stations that are not encumbered by design constraints imposed on them by a tokamak. The vacuum suitcase is an alternative solution to characterizing PFCs using diagnostics that are designed and built around a tokamak. The vacuum suitcase, called the Sample Exposure Probe (SEP), features mobile ultra-high vacuum pumping. Active pumping under high vacuum enables sample transfer between the Lithium Tokamak eXperiment-ß (LTX-ß) and a high resolution X-ray Photoelectron Spectroscopy (XPS) system that is situated close by. A thermocouple inserted in the back of the sample head measures heat flux from the plasma during exposure, and together with a button heater, allows the sample to match the LTX-ß PFCs in high temperature operations. As vacuum conditions are better during transfer and analysis than in the tokamak, less contamination is introduced to the samples. XPS scans on a dedicated analysis station enable peak identification due to higher resolution and signal to noise ratio. A similar probe could be implemented for other fusion devices. The SEP is the first vacuum suitcase implementation for fusion applications that incorporates active pumping.

7.
Rev Sci Instrum ; 90(9): 093501, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31575247

RESUMO

Fusion reactors and long pulse fusion experiments heavily depend on a continuous fuel cycle, which requires detailed monitoring of exhaust gases. We have used a diagnostic residual gas analyzer (DRGA) built as a prototype for ITER and integrated it on the most advanced stellarator fusion experiment, Wendelstein 7-X (W7-X). The DRGA was equipped with a sampling tube and assessed for gas time of flight sample response, effects of magnetic field on gas detection and practical aspects of use in a state of the art fusion environment. The setup was successfully commissioned and operated and was used to observe the gas composition of W7-X exhaust gases. The measured time of flight gas response was found to be in the order of a second for a 7 m sample tube. High values of magnetic field were found to affect the partial pressure readings of the DRGA and suggest that additional shielding is necessary in future experimental campaigns.

8.
Rev Sci Instrum ; 89(10): 10J123, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399729

RESUMO

A digital holography (DH) surface erosion/deposition diagnostic is being developed for 3D imaging of plasma facing component surfaces in situ and in real time. Digital holography is a technique that utilizes lasers reflected from a material surface to form an interferogram, which carries information about the topology of the surface when reconstructed. As described in this paper, dual CO2 lasers at 9.271 and 9.250 µm wavelengths illuminate the interrogated surface (at a distance of ∼1 m) in a region of ∼1 cm × 1 cm. The surface feature resolution is ∼0.1 mm in the plane of the surface, and the depth resolution ranges from ∼0.0001 to ∼2 mm perpendicular to the surface. The depth resolution lower limit is set by single-laser and detector optical limitations, while the upper limit is determined by 2π phase ambiguity of the dual-laser synthetic wavelength. Measurements have been made "on the bench" to characterize the single-laser and dual-laser DH configurations utilizing standard resolution targets and material targets that were previously exposed to high flux plasmas in either the Prototype Material Plasma Exposure eXperiment (Proto-MPEX) or the electro-thermal (ET) arc source. Typical DH measurements were made with 0.03 ms integration with an IR camera that can be framed at rates approaching 1.5 kHz. The DH diagnostic system is progressing toward in situ measurements of plasma erosion/deposition either on Proto-MPEX or the ET arc source.

9.
Rev Sci Instrum ; 89(10): 10K107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399841

RESUMO

Since 2010, an in-vessel calibration light source (ICLS) has been used periodically on JET to calibrate a range of diagnostics at UV, visible, and IR wavelengths. During shutdowns, the ICLS (which is essentially an integrating sphere) is positioned within the vacuum vessel by the remote handling (RH) system. Following the 2013 calibration runs, several changes were made to improve the efficiency and quality of the calibrations. Among these was the replacement of a 20 m "umbilical" cable which carried power and other electrical signals through a vessel port to/from a control cubicle. A lightweight 2 m cable now plugs directly into a single connector on the RH manipulator system, greatly reducing the time required for deployment and improving operational flexibility; e.g., the vessel access "floor" no longer needs to be installed. This change also means the system would be compatible with calibrations after a high neutron-fluence period of operation. An on-board micro-spectrometer now allows for real-time verification of the emitted spectrum. Finally, new "baffles" were designed and installed within the integrating sphere itself, greatly improving the spectral radiance uniformity at non-normal viewing angles (necessary due to orientation uncertainties with the RH system).

10.
Rev Sci Instrum ; 89(10): 10D113, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399852

RESUMO

Charge-exchange spectroscopy on JET has become particularly challenging with the introduction of the ITER-like wall. The line intensities are weaker and contaminated by many nuisance lines. We have therefore upgraded the instrumentation to improve throughput and allow the simultaneous measurement of impurity and fuel-ion charge exchange by splitting the light between two pairs of imaging spectrometers using dichroic beam splitters. Imaging instruments allow us to stack 11 × 1 mm diameter fibres on the entrance slits without cross talk. CCD cameras were chosen to have 512 × 512 pixels to allow frame transfer times <0.2 ms which with minimum exposure times of 5 ms give tolerable smearing even without a chopper. The image plane is optically demagnified 2:1 to match the sensor size of these cameras. Because the image plane of the spectrometer is tilted, the CCD must also be tilted to maintain focus over the spectrum (Scheimpflug condition). To avoid transverse keystoning (causing the vertical height of the spectra to change across the sensor), the configuration is furthermore designed to be telecentric by a suitable choice of the lens separation. The lens configuration is built almost entirely from commercial off-the-shelf components, which allowed it to be assembled and aligned relatively rapidly to meet the deadline for in-vessel calibration in the JET shutdown.

11.
Rev Sci Instrum ; 89(10): 10D118, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399896

RESUMO

The Lithium Tokamak eXperiment has undergone an upgrade to LTX-ß, a major part of which is the addition of neutral beam injection (NBI). NBI has allowed for a new charge exchange recombination spectroscopy (CHERS) system to be installed in order to measure impurity concentrations, ion temperature, and toroidal velocity. Previously on LTX measuring these parameters relied on passive spectroscopy and inversion techniques and had large uncertainty. The CHERS system has 52 total views, split into four groups of 13, half facing toward the beam and half symmetrically facing away from the beam, so the background non-beam related emission can be simultaneously subtracted. Both sets of views sample a major radius of 27-59 cm, with resolution through the beam of 1.5-2.5 cm. LTX-ß is expected to have its magnetic axis near 35 cm, with minor radii of 18-23 cm. Three separate spectrometers will be used for the diagnostic, giving the system great flexibility to simultaneously measure emission from multiple impurity lines. The viewing optics are f/1.8, allowing all of the spectrometers to be fully illuminated. Design and calibration of the system as well as the advantages of various configurations of the spectrometers will be highlighted.

12.
Rev Sci Instrum ; 89(10): 10C107, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399943

RESUMO

The Thomson scattering (TS) diagnostic on the Prototype-Material Plasma Exposure eXperiment has been upgraded to measure electron temperature (T e ) and density (n e ) simultaneously at two axial locations. After the first pass through the vacuum vessel, the exiting laser beamline is re-collimated in the atmosphere and rerouted into the vacuum vessel for the second pass. The upgrade will help diagnose axial T e and n e gradients between the "central chamber" and the target region which are located 1 m and 2.5 m, respectively, downstream from the Helicon radio-frequency source. The TS measurements have given T e ≈ 4-15 eV and n e ≈ 2-4 × 1019 m-3 at the central chamber and T e ≈ 1-2 eV and n e ≈ 1-2 × 1019 m-3 at the target region. The upgrade also increases the number of sampling points at the target region from 3 fibers to 5 fibers, measuring 3 cm radially across the plasma column, and 25 fibers in the central chamber, radially spanning 8 cm. The intensified CCD camera is double triggered for each laser pulse in order to measure (1) the TS and laser stray light and (2) the plasma background light that contains nuisance emission lines and bremsstrahlung. Subtracting the background light from the TS photons improves the temperature and density measurements. Details of the diagnostic setup, axial and radial measurements, and areas for further optimization are discussed.

13.
Rev Sci Instrum ; 87(11): 11D412, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910345

RESUMO

The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory (ORNL) is a precursor linear plasma device to the Material Plasma Exposure eXperiment (MPEX), which will study plasma material interactions (PMIs) for future fusion reactors. This paper will discuss the initial steps performed towards completing a power balance on Proto-MPEX to quantify where energy is lost from the plasma, including the relevant diagnostic package implemented. Machine operating parameters that will improve Proto-MPEX's performance may be identified, increasing its PMI research capabilities.

14.
Rev Sci Instrum ; 87(11): 11D624, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910428

RESUMO

A project has been started at ORNL to develop a dual-wavelength digital holography system for plasma facing component erosion measurements on prototype material plasma exposure experiment. Such a system will allow in situ real-time measurements of component erosion. Initially the system will be developed with one laser, and first experimental laboratory measurements will be made with the single laser system. In the second year of development, a second CO2 laser will be added and measurements with the dual wavelength system will begin. Adding the second wavelength allows measurements at a much longer synthetic wavelength.

15.
Rev Sci Instrum ; 87(11): 11D442, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910543

RESUMO

The detection limit for helium (He) partial pressure monitoring via the Penning discharge optical emission diagnostic, mainly used for tokamak divertor effluent gas analysis, is shown here to be possible for He concentrations down to 0.1% in predominantly deuterium effluents. This result from a dedicated laboratory study means that the technique can now be extended to intrinsically (non-injected) He produced as fusion reaction ash in deuterium-tritium experiments. The paper also examines threshold ionization mass spectroscopy as a potential backup to the optical technique, but finds that further development is needed to attain with plasma pulse-relevant response times. Both these studies are presented in the context of continuing development of plasma pulse-resolving, residual gas analysis for the upcoming JET deuterium-tritium campaign (DTE2) and for ITER.

16.
Rev Sci Instrum ; 87(11): 11E711, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910581

RESUMO

Fast visible cameras and a filterscope are used to examine the visible light emission from Oak Ridge National Laboratory's Proto-MPEX. The filterscope has been configured to perform helium line ratio measurements using emission lines at 667.9, 728.1, and 706.5 nm. The measured lines should be mathematically inverted and the ratios compared to a collisional radiative model (CRM) to determine Te and ne. Increasing the number of measurement chords through the plasma improves the inversion calculation and subsequent Te and ne localization. For the filterscope, one spatial chord measurement requires three photomultiplier tubes (PMTs) connected to pellicle beam splitters. Multiple, fast visible cameras with narrowband filters are an alternate technique for performing these measurements with superior spatial resolution. Each camera contains millions of pixels; each pixel is analogous to one filterscope PMT. The data can then be inverted and the ratios compared to the CRM to determine 2-dimensional "images" of Te and ne in the plasma. An assessment is made in this paper of the candidate He I emission lines for an imaging technique.

17.
Rev Sci Instrum ; 87(11): 11E525, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910676

RESUMO

A method for obtaining an accurate wavelength calibration over the entire focal plane of the JET edge CXS spectrometers is presented that uses a combination of the fringe pattern created with a Fabry-Pérot etalon and a neon lamp for cross calibration. The accuracy achieved is 0.03 Å, which is the same range of uncertainty as when neglecting population effects on the rest wavelength of the CX line. For the edge CXS diagnostic, this corresponds to a flow velocity of 4.5 km/s in the toroidal direction or 1.9 km/s in the poloidal direction.

18.
Rev Sci Instrum ; 87(11): 11E518, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910678

RESUMO

A Thomson scattering (TS) diagnostic has been successfully implemented on the prototype Material Plasma Exposure eXperiment (Proto-MPEX) at Oak Ridge National Laboratory. The diagnostic collects the light scattered by plasma electrons and spectroscopically resolves the Doppler shift imparted to the light by the velocity of the electrons. The spread in velocities is proportional to the electron temperature, while the total number of photons is proportional to the electron density. TS is a technique used on many devices to measure the electron temperature (Te) and electron density (ne) of the plasma. A challenging aspect of the technique is to discriminate the small number of Thomson scattered photons against the large peak of background photons from the high-power laser used to probe the plasma. A variety of methods are used to mitigate the background photons in Proto-MPEX, including Brewster angled windows, viewing dumps, and light baffles. With these methods, first results were measured from argon plasmas in Proto-MPEX, indicating Te ∼ 2 eV and ne ∼ 1 × 1019 m-3. The configuration of the Proto-MPEX TS diagnostic will be described and plans for improvement will be given.

20.
Rev Sci Instrum ; 85(11): 11D806, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430219

RESUMO

Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collection probe, and the expected results.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...