Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diagnostics (Basel) ; 11(6)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072648

RESUMO

We read with great interest the paper entitled "Impact of physical activity of cognitive functions: a new field for research and management of Cystic Fibrosis" by Elce et al. [...].

2.
Neuroradiol J ; 29(5): 323-5, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27549148

RESUMO

Commissural embryology mechanisms are not yet completely understood. The study and comprehension of callosal dysgenesis can provide remarkable insights into embryonic or fetal commissural development. The diffusion tensor imaging (DTI) technique allows the in vivo analyses of the white-matter microstructure and is a valid tool to clarify the disturbances of brain connections in patients with dysgenesis of the corpus callosum (CC). The segmental callosal agenesis (SCAG) is a rare partial agenesis of the corpus callosum (ACC). In a newborn with SCAG the DTI and tractography analyses proved that the CC was made of two separate segments consisting respectively of the ventral part in the genu and body of the CC, connecting the frontal lobes, and the dorsal part in the CC splenium and the attached hippocampal commissure (HC), connecting the parietal lobes and the fornix. These findings support the embryological thesis of a separated origin of the ventral and the dorsal parts of the CC.


Assuntos
Agenesia do Corpo Caloso/diagnóstico por imagem , Corpo Caloso/diagnóstico por imagem , Imagem de Tensor de Difusão , Processamento de Imagem Assistida por Computador , Corpo Caloso/embriologia , Feminino , Humanos , Masculino , Gravidez
3.
Brain ; 138(Pt 8): 2263-77, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084657

RESUMO

Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-ß proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures.


Assuntos
Axônios/patologia , Lesões Encefálicas/patologia , Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Microdiálise , Adolescente , Adulto , Imagem de Difusão por Ressonância Magnética/métodos , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...