Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Digit Imaging ; 36(6): 2507-2518, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37770730

RESUMO

Two data-driven algorithms were developed for detecting and characterizing Inferior Vena Cava (IVC) filters on abdominal computed tomography to assist healthcare providers with the appropriate management of these devices to decrease complications: one based on 2-dimensional data and transfer learning (2D + TL) and an augmented version of the same algorithm which accounts for the 3-dimensional information leveraging recurrent convolutional neural networks (3D + RCNN). The study contains 2048 abdominal computed tomography studies obtained from 439 patients who underwent IVC filter placement during the 10-year period from January 1st, 2009, to January 1st, 2019. Among these, 399 patients had retrievable filters, and 40 had non-retrievable filter types. The reference annotations for the filter location were obtained through a custom-developed interface. The ground truth annotations for the filter types were determined based on the electronic medical record and physician review of imaging. The initial stage of the framework returns a list of locations containing metallic objects based on the density of the structure. The second stage processes the candidate locations and determines which one contains an IVC filter. The final stage of the pipeline classifies the filter types as retrievable vs. non-retrievable. The computational models are trained using Tensorflow Keras API on an Nvidia Quadro GV100 system. We utilized a fine-tuning supervised training strategy to conduct our experiments. We find that the system achieves high sensitivity on detecting the filter locations with a high confidence value. The 2D + TL model achieved a sensitivity of 0.911 and a precision of 0.804, and the 3D + RCNN model achieved a sensitivity of 0.923 and a precision of 0.853 for filter detection. The system confidence for the IVC location predictions is high: 0.993 for 2D + TL and 0.996 for 3D + RCNN. The filter type prediction component of the system achieved 0.945 sensitivity, 0.882 specificity, and 0.97 AUC score with 2D + TL and 0. 940 sensitivity, 0.927 specificity, and 0.975 AUC score with 3D + RCNN. With the intent to create tools to improve patient outcomes, this study describes the initial phase of a computational framework to support healthcare providers in detecting patients with retained IVC filters, so an individualized decision can be made to remove these devices when appropriate, to decrease complications. To our knowledge, this is the first study that curates abdominal computed tomography (CT) scans and presents an algorithm for automated detection and characterization of IVC filters.


Assuntos
Filtros de Veia Cava , Humanos , Remoção de Dispositivo , Veia Cava Inferior/diagnóstico por imagem , Veia Cava Inferior/cirurgia , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
2.
Diagnostics (Basel) ; 12(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36010373

RESUMO

The detection of brain metastases (BM) in their early stages could have a positive impact on the outcome of cancer patients. The authors previously developed a framework for detecting small BM (with diameters of <15 mm) in T1-weighted contrast-enhanced 3D magnetic resonance images (T1c). This study aimed to advance the framework with a noisy-student-based self-training strategy to use a large corpus of unlabeled T1c data. Accordingly, a sensitivity-based noisy-student learning approach was formulated to provide high BM detection sensitivity with a reduced count of false positives. This paper (1) proposes student/teacher convolutional neural network architectures, (2) presents data and model noising mechanisms, and (3) introduces a novel pseudo-labeling strategy factoring in the sensitivity constraint. The evaluation was performed using 217 labeled and 1247 unlabeled exams via two-fold cross-validation. The framework utilizing only the labeled exams produced 9.23 false positives for 90% BM detection sensitivity, whereas the one using the introduced learning strategy led to ~9% reduction in false detections (i.e., 8.44). Significant reductions in false positives (>10%) were also observed in reduced labeled data scenarios (using 50% and 75% of labeled data). The results suggest that the introduced strategy could be utilized in existing medical detection applications with access to unlabeled datasets to elevate their performances.

3.
Comput Med Imaging Graph ; 98: 102059, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395606

RESUMO

Early detection of brain metastases (BM) is one of the determining factors for the successful treatment of patients with cancer; however, the accurate detection of small BM lesions (< 15 mm) remains a challenging task. We previously described a framework for the detection of small BM in single-sequence gadolinium-enhanced T1-weighted 3D MRI datasets. It combined classical image processing (IP) with a dedicated convolutional neural network, taking approximately 30 s to process each dataset due to computation-intensive IP stages. To overcome the speed limitation, this study aims to reformulate the framework via an augmented pair of CNNs (eliminating the IP) to reduce the processing times while preserving the BM detection performance. Our previous implementation of the BM detection algorithm utilized Laplacian of Gaussians (LoG) for the candidate selection portion of the solution. In this study, we introduce a novel BM candidate detection CNN (cdCNN) to replace this classical IP stage. The network is formulated to have (1) a similar receptive field as the LoG method, and (2) a bias for the detection of BM lesion loci. The proposed CNN is later augmented with a classification CNN to perform the BM detection task. The cdCNN achieved 97.4% BM detection sensitivity when producing 60 K candidates per 3D MRI dataset, while the LoG achieved 96.5% detection sensitivity with 73 K candidates. The augmented BM detection framework generated on average 9.20 false-positive BM detections per patient for 90% sensitivity, which is comparable with our previous results. However, it processes each 3D data in 1.9 s, presenting a 93.5% reduction in the computation time.


Assuntos
Neoplasias Encefálicas , Imageamento por Ressonância Magnética , Algoritmos , Neoplasias Encefálicas/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação
4.
J Digit Imaging ; 34(3): 554-571, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33791909

RESUMO

Coronary computed tomography angiography (CCTA) evaluation of chest pain patients in an emergency department (ED) is considered appropriate. While a "negative" CCTA interpretation supports direct patient discharge from an ED, labor-intensive analyses are required, with accuracy in jeopardy from distractions. We describe the development of an artificial intelligence (AI) algorithm and workflow for assisting qualified interpreting physicians in CCTA screening for total absence of coronary atherosclerosis. The two-phase approach consisted of (1) phase 1-development and preliminary testing of an algorithm for vessel-centerline extraction classification in a balanced study population (n = 500 with 50% disease prevalence) derived by retrospective random case selection, and (2) phase 2-simulated clinical Trialing of developed algorithm on a per-case (entire coronary artery tree) basis in a more "real-world" study population (n = 100 with 28% disease prevalence) from an ED chest pain series. This allowed pre-deployment evaluation of the AI-based CCTA screening application which provides vessel-by-vessel graphic display of algorithm inference results integrated into a clinically capable viewer. Algorithm performance evaluation used area under the receiver operating characteristic curve (AUC-ROC); confusion matrices reflected ground truth vs AI determinations. The vessel-based algorithm demonstrated strong performance with AUC-ROC = 0.96. In both phase 1 and phase 2, independent of disease prevalence differences, negative predictive values at the case level were very high at 95%. The rate of completion of the algorithm workflow process (96% with inference results in 55-80 s) in phase 2 depended on adequate image quality. There is potential for this AI application to assist in CCTA interpretation to help extricate atherosclerosis from chest pain presentations.


Assuntos
Doença da Artéria Coronariana , Inteligência Artificial , Dor no Peito/diagnóstico por imagem , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico por imagem , Serviço Hospitalar de Emergência , Humanos , Estudos Retrospectivos
5.
J Med Imaging (Bellingham) ; 8(2): 024004, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33855104

RESUMO

Purpose: Sharing medical images between institutions, or even inside the same institution, is restricted by various laws and regulations; research projects requiring large datasets may suffer as a result. These limitations might be addressed by an abundant supply of synthetic data that (1) are representative (i.e., the synthetic data could produce comparable research results as the original data) and (2) do not closely resemble the original images (i.e., patient privacy is protected). We introduce a framework that generates data with these requirements leveraging generative adversarial network (GAN) ensembles in a controlled fashion. Approach: To this end, an adaptive ensemble scaling strategy with the objective of representativeness is defined. A sampled Fréchet distance-based constraint was then created to eliminate poorly converged candidates. Finally, a mutual information-based validation metric was embedded into the framework to confirm there are visual differences between the original and the generated synthetic images. Results: The applicability of the solution is demonstrated with a case study for generating three-dimensional brain metastasis (BM) from T1-weighted contrast-enhanced MRI studies. A previously published BM detection system was reported to produce 9.12 false-positives at 90% detection sensitivity based on the original data. By using the synthetic data generated with the proposed framework, the system produced 9.53 false-positives at the same sensitivity level. Conclusions: Achieving comparable algorithm performance relying solely on synthetic data unveils a significant potential to eliminate/reduce patient privacy concerns when sharing data in medical imaging.

6.
J Med Imaging (Bellingham) ; 7(4): 044501, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32832577

RESUMO

Purpose: Our study investigates whether a machine-learning-based system can predict the rate of cognitive decline in mildly cognitively impaired patients by processing only the clinical and imaging data collected at the initial visit. Approach: We built a predictive model based on a supervised hybrid neural network utilizing a three-dimensional convolutional neural network to perform volume analysis of magnetic resonance imaging (MRI) and integration of nonimaging clinical data at the fully connected layer of the architecture. The experiments are conducted on the Alzheimer's Disease Neuroimaging Initiative dataset. Results: Experimental results confirm that there is a correlation between cognitive decline and the data obtained at the first visit. The system achieved an area under the receiver operator curve of 0.70 for cognitive decline class prediction. Conclusion: To our knowledge, this is the first study that predicts "slowly deteriorating/stable" or "rapidly deteriorating" classes by processing routinely collected baseline clinical and demographic data [baseline MRI, baseline mini-mental state examination (MMSE), scalar volumetric data, age, gender, education, ethnicity, and race]. The training data are built based on MMSE-rate values. Unlike the studies in the literature that focus on predicting mild cognitive impairment (MCI)-to-Alzheimer's disease conversion and disease classification, we approach the problem as an early prediction of cognitive decline rate in MCI patients.

7.
Comput Med Imaging Graph ; 83: 101721, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32470854

RESUMO

We propose a fully automated algorithm based on a deep learning framework enabling screening of a coronary computed tomography angiography (CCTA) examination for confident detection of the presence or absence of coronary artery atherosclerosis. The system starts with extracting the coronary arteries and their branches from CCTA datasets and representing them with multi-planar reformatted volumes; pre-processing and augmentation techniques are then applied to increase the robustness and generalization ability of the system. A 3-dimensional convolutional neural network (3D-CNN) is utilized to model pathological changes (e.g., atherosclerotic plaques) in coronary vessels. The system learns the discriminatory features between vessels with and without atherosclerosis. The discriminative features at the final convolutional layer are visualized with a saliency map approach to provide visual clues related to atherosclerosis likelihood and location. We have evaluated the system on a reference dataset representing 247 patients with atherosclerosis and 246 patients free of atherosclerosis. With five fold cross-validation, an Accuracy = 90.9%, Positive Predictive Value = 58.8%, Sensitivity = 68.9%, Specificity of 93.6%, and Negative Predictive Value (NPV) = 96.1% are achieved at the artery/branch level with threshold 0.5. The average area under the receiver operating characteristic curve is 0.91. The system indicates a high NPV, which may be potentially useful for assisting interpreting physicians in excluding coronary atherosclerosis in patients with acute chest pain.


Assuntos
Angiografia por Tomografia Computadorizada/métodos , Doença da Artéria Coronariana/diagnóstico por imagem , Imageamento Tridimensional , Redes Neurais de Computação , Angiografia Coronária/métodos , Humanos
8.
Rev Sci Instrum ; 91(3): 035108, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32259989

RESUMO

We report the fabrication, characterization, and use of rubidium vapor dispensers based on highly oriented pyrolytic graphite (HOPG) intercalated with metallic rubidium. Compared to commercial chromate salt dispensers, these intercalated HOPG (IHOPG) dispensers hold an order of magnitude more rubidium in a similar volume, require less than one-fourth the heating power, and emit less than one-half as many impurities. Appropriate processing permits exposure of the IHOPG to atmosphere for over ninety minutes without any adverse effects. Intercalation of cesium, potassium, and lithium into HOPG has also been demonstrated in the literature, which suggests that IHOPG dispensers may also be made for those metals.

9.
IEEE J Biomed Health Inform ; 24(10): 2883-2893, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32203040

RESUMO

Brain Metastases (BM) complicate 20-40% of cancer cases. BM lesions can present as punctate (1 mm) foci, requiring high-precision Magnetic Resonance Imaging (MRI) in order to prevent inadequate or delayed BM treatment. However, BM lesion detection remains challenging partly due to their structural similarities to normal structures (e.g., vasculature). We propose a BM-detection framework using a single-sequence gadolinium-enhanced T1-weighted 3D MRI dataset. The framework focuses on the detection of smaller (<15 mm) BM lesions and consists of: (1) candidate-selection stage, using Laplacian of Gaussian approach for highlighting parts of an MRI volume holding higher BM occurrence probabilities, and (2) detection stage that iteratively processes cropped region-of-interest volumes centered by candidates using a custom-built 3D convolutional neural network ("CropNet"). Data is augmented extensively during training via a pipeline consisting of random ga mma correction and elastic deformation stages; the framework thereby maintains its invariance for a plausible range of BM shape and intensity representations. This approach is tested using five-fold cross-validation on 217 datasets from 158 patients, with training and testing groups randomized per patient to eliminate learning bias. The BM database included lesions with a mean diameter of ∼5.4 mm and a mean volume of ∼160 mm3. For 90% BM-detection sensitivity, the framework produced on average 9.12 false-positive BM detections per patient (standard deviation of 3.49); for 85% sensitivity, the average number of false-positives declined to 5.85. Comparative analysis showed that the framework produces comparable BM-detection accuracy with the state-of-art approaches validated for significantly larger lesions.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Redes Neurais de Computação , Algoritmos , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Aprendizado Profundo , Humanos , Imageamento por Ressonância Magnética/métodos , Sensibilidade e Especificidade
10.
J Med Imaging (Bellingham) ; 7(1): 016502, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32064302

RESUMO

We present a roadmap for integrating artificial intelligence (AI)-based image analysis algorithms into existing radiology workflows such that (1) radiologists can significantly benefit from enhanced automation in various imaging tasks due to AI, and (2) radiologists' feedback is utilized to further improve the AI application. This is achieved by establishing three maturity levels where (1) research enables the visualization of AI-based results/annotations by radiologists without generating new patient records; (2) production allows the AI-based system to generate results stored in an institution's picture-archiving and communication system; and (3) feedback equips radiologists with tools for editing the AI inference results for periodic retraining of the deployed AI systems, thereby allowing continuous organic improvement of AI-based radiology-workflow solutions. A case study (i.e., detection of brain metastases with T1-weighted contrast-enhanced three-dimensional MRI) illustrates the deployment details of a particular AI-based application according to the aforementioned maturity levels. It is shown that the given AI application significantly improves with feedback coming from radiologists; the number of incorrectly detected brain metastases (false positives) decreases from 14.2 to 9.12 per patient with the number of subsequently annotated datasets increasing from 93 to 217 as a result of radiologist adjudication.

11.
J Digit Imaging ; 33(2): 431-438, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31625028

RESUMO

Collecting and curating large medical-image datasets for deep neural network (DNN) algorithm development is typically difficult and resource-intensive. While transfer learning (TL) decreases reliance on large data collections, current TL implementations are tailored to two-dimensional (2D) datasets, limiting applicability to volumetric imaging (e.g., computed tomography). Targeting performance enhancement of a DNN algorithm based on a small image dataset, we assessed incremental impact of 3D-to-2D projection methods, one supporting novel data augmentation (DA); photometric grayscale-to-color conversion (GCC); and/or TL on training of an algorithm from a small coronary computed tomography angiography (CCTA) dataset (200 examinations, 50% with atherosclerosis and 50% atherosclerosis-free) producing 245 diseased and 1127 normal coronary arteries/branches. Volumetric CCTA data was converted to a 2D format creating both an Aggregate Projection View (APV) and a Mosaic Projection View (MPV), supporting DA per vessel; both grayscale and color-mapped versions of each view were also obtained. Training was performed both without and with TL, and algorithm performance of all permutations was compared using area under the receiver operating characteristics curve. Without TL, APV performance was 0.74 and 0.87 on grayscale and color images, respectively, compared to 0.90 and 0.87 for MPV. With TL, APV performance was 0.78 and 0.88 on grayscale and color images, respectively, compared with 0.93 and 0.91 for MPV. In conclusion, TL enhances performance of a DNN algorithm from a small volumetric dataset after proposed 3D-to-2D reformatting, but additive gain is achieved with application of either GCC to APV or the proposed novel MPV technique for DA.


Assuntos
Algoritmos , Redes Neurais de Computação , Angiografia por Tomografia Computadorizada , Humanos , Aprendizado de Máquina , Curva ROC
12.
J Neuroeng Rehabil ; 16(1): 126, 2019 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-31665058

RESUMO

Epilepsy affects nearly 1% of the world's population. A third of epilepsy patients suffer from a kind of epilepsy that cannot be controlled by current medications. For those where surgery is not an option, neurostimulation may be the only alternative to bring relief, improve quality of life, and avoid secondary injury to these patients. Until recently, open loop neurostimulation was the only alternative for these patients. However, for those whose epilepsy is applicable, the medical approval of the responsive neural stimulation and the closed loop vagal nerve stimulation systems have been a step forward in the battle against uncontrolled epilepsy. Nonetheless, improvements can be made to the existing systems and alternative systems can be developed to further improve the quality of life of sufferers of the debilitating condition. In this paper, we first present a brief overview of epilepsy as a disease. Next, we look at the current state of biomarker research in respect to sensing and predicting epileptic seizures. Then, we present the current state of open loop neural stimulation systems. We follow this by investigating the currently approved, and some of the recent experimental, closed loop systems documented in the literature. Finally, we provide discussions on the current state of neural stimulation systems for controlling epilepsy, and directions for future studies.


Assuntos
Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica/instrumentação , Terapia por Estimulação Elétrica/métodos , Biomarcadores , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos/epidemiologia , Humanos
13.
Radiol Artif Intell ; 1(6): e180095, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33937804

RESUMO

PURPOSE: To delineate image data curation needs and describe a locally designed graphical user interface (GUI) to aid radiologists in image annotation for artificial intelligence (AI) applications in medical imaging. MATERIALS AND METHODS: GUI components support image analysis toolboxes, picture archiving and communication system integration, third-party applications, processing of scripting languages, and integration of deep learning libraries. For clinical AI applications, GUI components included two-dimensional segmentation and classification; three-dimensional segmentation and quantification; and three-dimensional segmentation, quantification, and classification. To assess radiologist engagement and performance efficiency associated with GUI-related capabilities, image annotation rate (studies per day) and speed (minutes per case) were evaluated in two clinical scenarios of varying complexity: hip fracture detection and coronary atherosclerotic plaque demarcation and stenosis grading. RESULTS: For hip fracture, 1050 radiographs were annotated over 7 days (150 studies per day; median speed: 10 seconds per study [interquartile range, 3-21 seconds per study]). A total of 294 coronary CT angiographic studies with 1843 arteries and branches were annotated for atherosclerotic plaque over 23 days (15.2 studies [80.1 vessels] per day; median speed: 6.08 minutes per study [interquartile range, 2.8-10.6 minutes per study] and 73 seconds per vessel [interquartile range, 20.9-155 seconds per vessel]). CONCLUSION: GUI-component compatibility with common image analysis tools facilitates radiologist engagement in image data curation, including image annotation, supporting AI application development and evolution for medical imaging. When complemented by other GUI elements, a continuous integrated workflow supporting formation of an agile deep neural network life cycle results.Supplemental material is available for this article.© RSNA, 2019.

14.
Phys Rev Lett ; 94(15): 153902, 2005 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-15904146

RESUMO

We demonstrate a technique for generating tunable all-optical delays in room temperature single-mode optical fibers at telecommunication wavelengths using the stimulated Brillouin scattering process. This technique makes use of the rapid variation of the refractive index that occurs in the vicinity of the Brillouin gain feature. The wavelength at which the induced delay occurs is broadly tunable by controlling the wavelength of the laser pumping the process, and the magnitude of the delay can be tuned continuously by as much as 25 ns by adjusting the intensity of the pump field. The technique can be applied to pulses as short as 15 ns. This scheme represents an important first step towards implementing slow-light techniques for various applications including buffering in telecommunication systems.

15.
Phys Rev Lett ; 92(8): 083902, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14995774

RESUMO

We have observed filamentation due to azimuthal modulational instabilities in spinning ring solitons with orbital angular momentum m variant Planck's over 2pi in sodium vapor. We show experimentally that vortex beams with m values of 1, 2, and 3 tend to break into two, four, and six filaments, respectively. Treating the sodium vapor as a Doppler broadened two-level atomic system, we find that we can accurately model the propagation and breakup of these beams with numerical simulations.

16.
Science ; 301(5630): 200-2, 2003 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-12855803

RESUMO

We have observed both superluminal and ultraslow light propagation in an alexandrite crystal at room temperature. Group velocities as slow as 91 meters per second to as fast as -800 meters per second were measured and attributed to the influence of coherent population oscillations involving chromium ions in either mirror or inversion sites within the crystal lattice. Namely, ions in mirror sites are inversely saturable and cause superluminal light propagation, whereas ions in inversion sites experience conventional saturable absorption and produce slow light. This technique for producing large group indices is considerably easier than the existing methods to implement and is therefore suitable for diverse applications.

17.
Phys Rev Lett ; 90(11): 113903, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12688928

RESUMO

We have observed slow light propagation with a group velocity as low as 57.5+/-0.5 m/s at room temperature in a ruby crystal. A quantum coherence effect, coherent population oscillations, produces a very narrow spectral "hole" in the homogeneously broadened absorption profile of ruby. The resulting rapid spectral variation of the refractive index leads to a large value of the group index. We observe slow light propagation both for Gaussian-shaped light pulses and for amplitude modulated optical beams in a system that is much simpler than those previously used for generating slow light.

18.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(4 Pt 2): 046631, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12443373

RESUMO

We investigate a class of vector ring spatial solitons that carry no net angular momentum. Specifically, we show analytically and numerically that the dominant low-frequency perturbations that typically disrupt ring solitons are suppressed for these solitons. By comparing our analytical and numerical results, we show that our simple analysis gives good qualitative predictions on the regions of stability for these beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...