Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38338847

RESUMO

Lower urinary tract dysfunction (LUTD) presents a global health challenge with symptoms impacting a substantial percentage of the population. The absence of reliable biomarkers complicates the accurate classification of LUTD subtypes with shared symptoms such as non-ulcerative Bladder Pain Syndrome (BPS) and overactive bladder caused by bladder outlet obstruction with Detrusor Overactivity (DO). This study introduces a machine learning (ML)-based approach for the identification of mRNA signatures specific to non-ulcerative BPS. Using next-generation sequencing (NGS) transcriptome data from bladder biopsies of patients with BPS, benign prostatic obstruction with DO, and controls, our statistical approach successfully identified 13 candidate genes capable of discerning BPS from control and DO patients. This set was validated using Quantitative Polymerase Chain Reaction (QPCR) in a larger patient cohort. To confirm our findings, we applied both supervised and unsupervised ML approaches to the QPCR dataset. A three-mRNA signature TPPP3, FAT1, and NCALD, emerged as a robust classifier for non-ulcerative BPS. The ML-based framework used to define BPS classifiers establishes a solid foundation for comprehending the gene expression changes in the bladder during BPS and serves as a valuable resource and methodology for advancing signature identification in other fields. The proposed ML pipeline demonstrates its efficacy in handling challenges associated with limited sample sizes, offering a promising avenue for applications in similar domains.


Assuntos
Cistite Intersticial , Bexiga Urinária Hiperativa , Humanos , Cistite Intersticial/genética , Cistite Intersticial/patologia , Transcriptoma , Bexiga Urinária/patologia , Aprendizado de Máquina , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260635

RESUMO

Lower urinary tract dysfunction (LUTD) presents a global health challenge with symptoms impacting a substantial percentage of the population. The absence of reliable biomarkers complicates the accurate classification of LUTD subtypes with shared symptoms such as non-ulcerative Bladder Pain Syndrome (BPS) and overactive bladder caused by bladder outlet obstruction with Detrusor Overactivity (DO). This study introduces a machine learning (ML)-based approach for the identification of mRNA signatures specific to non-ulcerative BPS. Using next-generation sequencing (NGS) transcriptome data from bladder biopsies of patients with BPS, benign prostatic obstruction with DO and controls, our statistical approach successfully identified 13 candidate genes capable of discerning BPS from control and DO patients. This set was subsequently validated using Quantitative Polymerase Chain Reaction (QPCR) in a larger patient cohort. To confirm our findings, we applied both supervised and unsupervised ML approaches to the QPCR dataset. Notably, a three-mRNA signature TPPP3, FAT1, and NCALD, emerged as a robust classifier, effectively distinguishing patients with non-ulcerative BPS from controls and patients with DO. This signature was universally selected by both supervised and unsupervised approaches. The ML-based framework used to define BPS classifiers not only establishes a solid foundation for comprehending the specific gene expression changes in the bladder of the patients with BPS but also serves as a valuable resource and methodology for advancing signature identification in other fields. The proposed ML pipeline demonstrates its efficacy in handling challenges associated with limited sample sizes, offering a promising avenue for applications in similar domains.

3.
bioRxiv ; 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38106029

RESUMO

Spinal cord injury (SCI) evokes profound bladder dysfunction. Current treatments are limited by a lack of molecular data to inform novel therapeutic avenues. Previously, we showed systemic inosine treatment improved bladder function following SCI in rats. Here, we applied multi-omics analysis to explore molecular alterations in the bladder and their sensitivity to inosine following SCI. Canonical pathways regulated by SCI included those associated with protein synthesis, neuroplasticity, wound healing, and neurotransmitter degradation. Upstream regulator analysis identified MYC as a key regulator, whereas causal network analysis predicted multiple regulators of DNA damage response signaling following injury, including PARP-1. Staining for both DNA damage (γH2AX) and PARP activity (poly-ADP-ribose) markers in the bladder was increased following SCI, and attenuated in inosine-treated tissues. Proteomics analysis suggested that SCI induced changes in protein synthesis-, neuroplasticity-, and oxidative stress-associated pathways, a subset of which were shown in transcriptomics data to be inosine-sensitive. These findings provide novel insights into the molecular landscape of the bladder following SCI, and highlight a potential role for PARP inhibition to treat neurogenic bladder dysfunction.

4.
Sci Rep ; 13(1): 19520, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945675

RESUMO

Neurogenic bladder (NB) affects people of all ages. Electric impedance myography (EIM) assesses localized muscle abnormalities. Here, we sought to investigate whether unique detrusor EIM signatures are present in NB due to spinal cord injury (SCI). Twenty-eight, 8-10 weeks old, C57BL/6J female mice were studied. Twenty underwent spinal cord transection; 8 served as controls. Cohorts were euthanized at 4 and 6 weeks after spinal cord transection. Each bladder was measured in-situ with EIM with applied frequencies of 1 kHz to 10 MHz, and then processed for molecular and histologic study. SCI mice had greater bladder-to-body weight ratio (p < 0.0001), greater collagen deposition (p = 0.009), and greater smooth-muscle-myosin-heavy-chain isoform A/B ratio (p < 0.0001). Compared with the control group, the SCI group was associated with lower phase, reactance, and resistance values (p < 0.01). Significant correlations (p < 0.001) between bladder-to-body weight ratios and EIM measurements were observed across the entire frequency spectrum. A severely hypertrophied phenotype was characterized by even greater bladder-to-body weight ratios and more depressed EIM values. Our study demonstrated distinct EIM alterations in the detrusor muscle of mice with NB due to SCI. With further refinement, EIM may offer a potential point-of-care tool for the assessment of NB and its response to treatment.


Assuntos
Traumatismos da Medula Espinal , Bexiga Urinaria Neurogênica , Humanos , Camundongos , Feminino , Animais , Músculo Esquelético/fisiologia , Impedância Elétrica , Bexiga Urinaria Neurogênica/etiologia , Camundongos Endogâmicos C57BL , Miografia , Fenótipo , Peso Corporal
5.
bioRxiv ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37425923

RESUMO

Background: In recent years, three-dimensional (3D) spheroid models have become increasingly popular in scientific research as they provide a more physiologically relevant microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has proven to be advantageous as it offers a better understanding of the cellular behavior, drug efficacy, and toxicity as compared to traditional two-dimensional cell culture methods. However, the use of 3D spheroid assays is impeded by the absence of automated and user-friendly tools for spheroid image analysis, which adversely affects the reproducibility and throughput of these assays. Results: To address these issues, we have developed a fully automated, web-based tool called SpheroScan, which uses the deep learning framework called Mask Regions with Convolutional Neural Networks (R-CNN) for image detection and segmentation. To develop a deep learning model that could be applied to spheroid images from a range of experimental conditions, we trained the model using spheroid images captured using IncuCyte Live-Cell Analysis System and a conventional microscope. Performance evaluation of the trained model using validation and test datasets shows promising results. Conclusion: SpheroScan allows for easy analysis of large numbers of images and provides interactive visualization features for a more in-depth understanding of the data. Our tool represents a significant advancement in the analysis of spheroid images and will facilitate the widespread adoption of 3D spheroid models in scientific research. The source code and a detailed tutorial for SpheroScan are available at https://github.com/FunctionalUrology/SpheroScan.

6.
Gigascience ; 122022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38091508

RESUMO

BACKGROUND: Assessing the performance of machine learning (ML) models requires careful consideration of the evaluation metrics used. It is often necessary to utilize multiple metrics to gain a comprehensive understanding of a trained model's performance, as each metric focuses on a specific aspect. However, comparing the scores of these individual metrics for each model to determine the best-performing model can be time-consuming and susceptible to subjective user preferences, potentially introducing bias. RESULTS: We propose the Machine Learning Cumulative Performance Score (MLcps), a novel evaluation metric for classification problems. MLcps integrates several precomputed evaluation metrics into a unified score, enabling a comprehensive assessment of the trained model's strengths and weaknesses. We tested MLcps on 4 publicly available datasets, and the results demonstrate that MLcps provides a holistic evaluation of the model's robustness, ensuring a thorough understanding of its overall performance. CONCLUSIONS: By utilizing MLcps, researchers and practitioners no longer need to individually examine and compare multiple metrics to identify the best-performing models. Instead, they can rely on a single MLcps value to assess the overall performance of their ML models. This streamlined evaluation process saves valuable time and effort, enhancing the efficiency of model evaluation. MLcps is available as a Python package at https://pypi.org/project/MLcps/.

7.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37889008

RESUMO

BACKGROUND: In recent years, 3-dimensional (3D) spheroid models have become increasingly popular in scientific research as they provide a more physiologically relevant microenvironment that mimics in vivo conditions. The use of 3D spheroid assays has proven to be advantageous as it offers a better understanding of the cellular behavior, drug efficacy, and toxicity as compared to traditional 2-dimensional cell culture methods. However, the use of 3D spheroid assays is impeded by the absence of automated and user-friendly tools for spheroid image analysis, which adversely affects the reproducibility and throughput of these assays. RESULTS: To address these issues, we have developed a fully automated, web-based tool called SpheroScan, which uses the deep learning framework called Mask Regions with Convolutional Neural Networks (R-CNN) for image detection and segmentation. To develop a deep learning model that could be applied to spheroid images from a range of experimental conditions, we trained the model using spheroid images captured using IncuCyte Live-Cell Analysis System and a conventional microscope. Performance evaluation of the trained model using validation and test datasets shows promising results. CONCLUSION: SpheroScan allows for easy analysis of large numbers of images and provides interactive visualization features for a more in-depth understanding of the data. Our tool represents a significant advancement in the analysis of spheroid images and will facilitate the widespread adoption of 3D spheroid models in scientific research. The source code and a detailed tutorial for SpheroScan are available at https://github.com/FunctionalUrology/SpheroScan.


Assuntos
Aprendizado Profundo , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Software
8.
J Vis Exp ; (160)2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32628176

RESUMO

We describe the implementation of spinal cord injury in mice to elicit detrusor-sphincter dyssynergia, a functional bladder outlet obstruction, and subsequent bladder wall remodeling. To facilitate assessment of the cellular composition of the bladder wall in non-injured control and spinal cord injured mice, we developed an optimized dissociation protocol that supports high cell viability and enables the detection of discrete subpopulations by flow cytometry. Spinal cord injury is created by complete transection of the thoracic spinal cord. At the time of tissue harvest, the animal is perfused with phosphate-buffered saline under deep anesthesia and bladders are harvested into Tyrode's buffer. Tissues are minced prior to incubation in digestion buffer that has been optimized based on the collagen content of mouse bladder as determined by interrogation of publicly available gene expression databases. Following generation of a single cell suspension, material is analyzed by flow cytometry for assessment of cell viability, cell number and specific subpopulations. We demonstrate that the method yields cell populations with greater than 90% viability, and robust representation of cells of mesenchymal and epithelial origin. This method will enable accurate downstream analysis of discrete cell types in mouse bladder and potentially other organs.


Assuntos
Separação Celular/métodos , Traumatismos da Medula Espinal/patologia , Bexiga Urinária/patologia , Animais , Calibragem , Sobrevivência Celular , Análise de Dados , Matriz Extracelular/metabolismo , Feminino , Citometria de Fluxo , Camundongos , Perfusão , Traumatismos da Medula Espinal/cirurgia , Transcriptoma/genética
9.
Methods Mol Biol ; 1464: 35-47, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27858354

RESUMO

Coculture assays allow the investigation of the role of endothelial cell and mural cell interactions in small vessel development and function. Different setups for coculture can be used to assay questions of interest. We include here methods for direct coculture, indirect coculture, and coculture in a three-dimensional extracellular matrix scaffold for studies of either a simple and direct association between the two cell types, the exchange of soluble molecules, or the interaction within a biomimetic tissue microenvironment.


Assuntos
Técnicas de Cocultura/métodos , Células Endoteliais/citologia , Miócitos de Músculo Liso/citologia , Pericitos/citologia , Animais , Bovinos , Células Cultivadas , Humanos , Intestinos/citologia , Retina/citologia , Suínos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...