Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; : e202400001, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38747690

RESUMO

Various wound dressings have been developed so far for wound healing, but most of them are ineffective in properly reestablishing the skin's structure, which increases infection risks and dehydration. Electrospun membranes are particularly interesting for wound dressing applications because they mimic the extracellular matrix of healthy skin. In this study, a potential wound healing platform capable of inducing synergistic antibacterial and antioxidation activities was developed by incorporating bio-active rosmarinic acid-hydroxyapatite hybrid (HAP-RA) with different contents (0.5, 1, and 1.5 wt.%) into the electrospun polyamide 6 (PA6) nanofibers. Then, polyethylene glycol (PEG) was introduced to the nanofibrous composite to improve the biocompatibility and biodegradability of the dressing. The results indicated that the hydrophilicity, water uptake, biodegradability, and mechanical properties of the obtained PA6/PEG/HAP-RA nanofibrous composite enhanced at 1 wt.% of HAP-RA. The nanofibrous composite had excellent antibacterial activity. The antioxidation potential of the samples was assessed in vitro. The MTT assay performed on the L929 cell line confirmed the positive effects of the nanofibrous scaffold on cell viability and proliferation. According to the results, the PA6/PEG/HAP-RA nanofibrous composite showed the desirable physiochemical and biological properties besides antibacterial and antioxidative capabilities, making it a promising candidate for further studies in wound healing applications.

2.
Small ; : e2311903, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453672

RESUMO

In recent years, there has been growing interest in developing innovative materials and therapeutic strategies to enhance wound healing outcomes, especially for chronic wounds and antimicrobial resistance. Metal-organic frameworks (MOFs) represent a promising class of materials for next-generation wound healing and dressings. Their high surface area, pore structures, stimuli-responsiveness, antibacterial properties, biocompatibility, and potential for combination therapies make them suitable for complex wound care challenges. MOF-based composites promote cell proliferation, angiogenesis, and matrix synthesis, acting as carriers for bioactive molecules and promoting tissue regeneration. They also have stimuli-responsivity, enabling photothermal therapies for skin cancer and infections. Herein, a critical analysis of the current state of research on MOFs and MOF-based composites for wound healing and dressings is provided, offering valuable insights into the potential applications, challenges, and future directions in this field. This literature review has targeted the multifunctionality nature of MOFs in wound-disease therapy and healing from different aspects and discussed the most recent advancements made in the field. In this context, the potential reader will find how the MOFs contributed to this field to yield more effective, functional, and innovative dressings and how they lead to the next generation of biomaterials for skin therapy and regeneration.

3.
Biomed Pharmacother ; 174: 116433, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508079

RESUMO

Nano pharmacology is considered an effective, safe, and applicable approach for drug delivery applications. Solid lipid nanoparticle (SLNs) colloids contain biocompatible lipids which are capable of encapsulating and maintaining hydrophilic or hydrophobic drugs in the solid matrix followed by releasing the drug in a sustained manner in the target site. SLNs have more promising potential than other drug delivery systems for various purposes. Nowadays, the SLNs are used as a carrier for antibiotics, chemotherapeutic drugs, nucleic acids, herbal compounds, etc. The SLNs have been widely applied in biomedicine because of their non-toxicity, biocompatibility, and simple production procedures. In this review, the complications related to the optimization, preparation process, routes of transplantation, uptake and delivery system, and release of the loaded drug along with the advantages of SLNs as therapeutic agents were discussed.


Assuntos
Infecções Bacterianas , Lipídeos , Lipossomos , Nanopartículas , Humanos , Nanopartículas/química , Lipídeos/química , Animais , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Antibacterianos/administração & dosagem , Antibacterianos/farmacologia , Antibacterianos/química , Sistemas de Liberação de Medicamentos/métodos , Portadores de Fármacos/química
4.
Bioact Mater ; 35: 99-121, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38283385

RESUMO

Recently, the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ. This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant (Pluronic F127), bioactive glass (BG), and black phosphorus (BP). The nanocomposite was prepared through a two-step synthetic strategy, including a microwave treatment that turned BP nanosheets (BPNS) into quantum dots (BPQDs) with 5 ± 2 nm dimensions in situ. The effects of surfactant and microwave treatment were assessed in vitro: the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite. The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid. The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro, finding that 150 µg mL-1 was the lowest concentration which prevented the proliferation of SAOS-2 cells, while the counterpart without BP did not affect the cell growth rate. Moreover, the apoptosis pathways were evaluated and a mechanism of action was proposed. NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia. The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer, breast cancer, and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers. The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells; the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells. This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.

5.
Arch Pharm (Weinheim) ; 357(4): e2300569, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38251938

RESUMO

Melittin (MLT), a peptide containing 26 amino acids, is a key constituent of bee venom. It comprises ∼40%-60% of the venom's dry weight and is the main pricing index for bee venom, being the causative factor of pain. The unique properties of MLT extracted from bee venom have made it a very valuable active ingredient in the pharmaceutical industry as this cationic and amphipathic peptide has propitious effects on human health in diverse biological processes. It has the ability to strongly impact the membranes of cells and display hemolytic activity with anticancer characteristics. However, the clinical application of MLT has been limited by its severe hemolytic activity, which poses a challenge for therapeutic use. By employing more efficient mechanisms, such as modifying the MLT sequence, genetic engineering, and nano-delivery systems, it is anticipated that the limitations posed by MLT can be overcome, thereby enabling its wider application in therapeutic contexts. This review has outlined recent advancements in MLT's nano-delivery systems and genetically engineered cells expressing MLT and provided an overview of where the MLTMLT's platforms are and where they will go in the future with the challenges ahead. The focus is on exploring how these approaches can overcome the limitations associated with MLT's hemolytic activity and improve its selectivity and efficacy in targeting cancer cells. These advancements hold promise for the creation of innovative and enhanced therapeutic approaches based on MLT for the treatment of cancer.


Assuntos
Venenos de Abelha , Neoplasias , Humanos , Meliteno/farmacologia , Meliteno/química , Meliteno/metabolismo , Relação Estrutura-Atividade , Venenos de Abelha/farmacologia , Venenos de Abelha/uso terapêutico , Neoplasias/tratamento farmacológico , Peptídeos/química
6.
Int J Biol Macromol ; 258(Pt 1): 128716, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081483

RESUMO

Among different methods for the fabrication of bone scaffolds, 3D printing has created great advances in tissue engineering and regenerative medicine owing to its ability to make objects mimicking native tissues. Thanks to its abundant availability, structural features, and favorable biological properties, chitosan (CS) hydrogel was selected to be used for preparation of the bone scaffolds. However, the 3D printing of CS-based hydrogels is still under early exploration. Knowing the fact that natural polymers are not so competent at holding large amounts of water, poly(vinyl alcohol) as the second polymer was employed. The novelty of the present research lies in the concept of employing sol-gel chemistry in order to attain proper viscosity and rheological behavior to give self-standing filaments of the polymer blends. Employing sol-gel reaction in the preparation of the hybrid hydrogels had the advantage of endowing shape fidelity to the polymer blend without any solidifying in the needle. The obtained organic-inorganic hybrids were directly printed and subsequently cross-linked. The best performance in terms of mechanical strength, cell viability, and bio-mineralization was observed for the 50:50 ratio. The in vitro cell culture and the bioactivity results showed that the printed scaffolds with this method have great potential in bone tissue engineering. Further, this method could be expandable to print other hydrogels with diverse applications such as implantable devices, soft robotics, etc.


Assuntos
Quitosana , Quitosana/química , Alicerces Teciduais/química , Álcool de Polivinil , Engenharia Tecidual/métodos , Polímeros , Hidrogéis/química , Etanol , Impressão Tridimensional
7.
Mater Horiz ; 11(2): 363-387, 2024 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-37955196

RESUMO

Wound healing is a complex process that requires effective management to prevent infections and promote efficient tissue regeneration. In recent years, upconversion nanoparticles (UCNPs) have emerged as promising materials for wound dressing applications due to their unique optical properties and potential therapeutic functionalities. These nanoparticles possess enhanced antibacterial properties when functionalized with antibacterial agents, helping to prevent infections, a common complication in wound healing. They can serve as carriers for controlled drug delivery, enabling targeted release of therapeutic agents to the wound site, allowing for tailored treatment and optimal healing conditions. These nanoparticles possess the ability to convert near-infrared (NIR) light into the visible and/or ultraviolet (UV) regions, making them suitable for therapeutic (photothermal therapy and photodynamic therapy) and diagnostic applications. In the context of wound healing, these nanoparticles can be combined with other materials such as hydrogels, fibers, metal-organic frameworks (MOFs), graphene oxide, etc., to enhance the healing process and prevent the growth of microbial infections. Notably, UCNPs can act as sensors for real-time monitoring of the wound healing progress, providing valuable feedback to healthcare professionals. Despite their potential, the use of UCNPs in wound dressing applications faces several challenges. Ensuring the stability and biocompatibility of UCNPs under physiological conditions is crucial for their effective integration into dressings. Comprehensive safety and efficacy evaluations are necessary to understand potential risks and optimize UCNP-based dressings. Scalability and cost-effectiveness of UCNP synthesis and manufacturing processes are important considerations for practical applications. In addition, efficient incorporation of UCNPs into dressings, achieving uniform distribution, poses an important challenge that needs to be addressed. Future research should prioritize addressing concerns regarding stability and biocompatibility, efficient integration into dressings, rigorous safety evaluation, scalability, and cost-effectiveness. The purpose of this review is to critically evaluate the advantages, challenges, and key properties of UCNPs in wound dressing applications to provide insights into their potential as innovative solutions for enhancing wound healing outcomes. We have provided a detailed description of various types of smart wound dressings, focusing on the synthesis and biomedical applications of UCNPs, specifically their utilization in different types of wound dressings.


Assuntos
Nanopartículas , Fotoquimioterapia , Humanos , Nanopartículas/uso terapêutico , Bandagens , Cicatrização , Antibacterianos/uso terapêutico
8.
Int J Pharm ; 642: 123207, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37419431

RESUMO

Endowing wound dressings with drug delivery capability is a suitable strategy to transfer medicinal compounds locally to damaged skin layers. These dressings are especially useful for accelerating the healing rate in the cases of long-term treatment, and adding more functionalities to the platform. In this study, a wound dressing composed of polyamide 6, hyaluronic acid, and curcumin-loaded halloysite nanotubes (PA6/HA/HNT@Cur) was designed and fabricated for wound healing applications. The physicochemical properties of this platform were investigated through Fourier-transform infrared spectroscopy and field-emission scanning electron microscopy. Moreover, wettability, tensile strength, swelling, and in vitro degradation were assessed. The HNT@Cur was incorporated in the fibers in three concentrations and 1 wt% was found as the optimum concentration yielding desirable structural and mechanical properties. The loading efficiency of Cur on HNT was calculated to be 43 ± 1.8%, and the release profiles and kinetics of nanocomposite were investigated at physiological and acidic pH. In vitro antibacterial and antioxidation studies showed that the PA6/HA/HNT@Cur mat had strong antibacterial and antioxidation activities against gram-positive and -negative pathogens and reactive oxygen species, respectively. Desirable cell compatibility of the mat was found through MTT assay against L292 cells up to 72 h. Finally, the efficacy of the designed wound dressing was evaluated in vivo; after 14 days, the results indicated that the wound size treated with the nanocomposite mat significantly decreased compared to the control sample. This study proposed a swift and straightforward method for developing materials that might be utilized as wound dressings in clinical settings.


Assuntos
Curcumina , Nanofibras , Nanotubos , Curcumina/farmacologia , Curcumina/química , Argila/química , Antioxidantes/farmacologia , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanotubos/química , Cicatrização
9.
Adv Mater ; 35(41): e2302858, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37259776

RESUMO

The journey of ceramics in medicine has been synchronized with an evolution from the first generation-alumina, zirconia, etc.-to the third -3D scaffolds. There is an up-and-coming member called oxygen-deficient or colored bioceramics, which have recently found their way through biomedical applications. The oxygen vacancy steers the light absorption toward visible and near infrared regions, making the colored bioceramics multifunctional-therapeutic, diagnostic, and regenerative. Oxygen-deficient bioceramics are capable of turning light into heat and reactive oxygen species for photothermal and photodynamic therapies, respectively, and concomitantly yield infrared and photoacoustic images. Different types of oxygen-deficient bioceramics have been recently developed through various synthesis routes. Some of them like TiO2- x , MoO3- x , and WOx have been more investigated for biomedical applications, whereas the rest have yet to be scrutinized. The most prominent advantage of these bioceramics over the other biomaterials is their multifunctionality endowed with a change in the microstructure. There are some challenges ahead of this category discussed at the end of the present review. By shedding light on this recently born bioceramics subcategory, it is believed that the field will undergo a big step further as these platforms are naturally multifunctional.


Assuntos
Materiais Biocompatíveis , Fotoquimioterapia , Materiais Biocompatíveis/química , Cerâmica/uso terapêutico , Cerâmica/química , Oxigênio
10.
J Nanobiotechnology ; 21(1): 199, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344894

RESUMO

Viruses are a major cause of mortality and socio-economic downfall despite the plethora of biopharmaceuticals designed for their eradication. Conventional antiviral therapies are often ineffective. Live-attenuated vaccines can pose a safety risk due to the possibility of pathogen reversion, whereas inactivated viral vaccines and subunit vaccines do not generate robust and sustained immune responses. Recent studies have demonstrated the potential of strategies that combine nanotechnology concepts with the diagnosis, prevention, and treatment of viral infectious diseases. The present review provides a comprehensive introduction to the different strains of viruses involved in respiratory diseases and presents an overview of recent advances in the diagnosis and treatment of viral infections based on nanotechnology concepts and applications. Discussions in diagnostic/therapeutic nanotechnology-based approaches will be focused on H1N1 influenza, respiratory syncytial virus, human parainfluenza virus type 3 infections, as well as COVID-19 infections caused by the SARS-CoV-2 virus Delta variant and new emerging Omicron variant.


Assuntos
COVID-19 , Vírus da Influenza A Subtipo H1N1 , Nanoestruturas , Pneumonia , Viroses , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/prevenção & controle , Nanoestruturas/uso terapêutico , Teste para COVID-19
11.
Med Res Rev ; 43(6): 2115-2176, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37165896

RESUMO

Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.


Assuntos
Neoplasias da Mama , Nanopartículas , Neoplasias , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Imunoterapia , Terapia Genética , Nanopartículas/química , Microambiente Tumoral
12.
Small ; 19(19): e2207057, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36775954

RESUMO

Oxidative damage and infection can prevent or delay tissue repair. Moreover, infection reinforces reactive oxygen species (ROS) formation, which makes the wound's condition even worse. Therefore, the need for antioxidant and antibacterial agents is felt for tissue regeneration. There are emerging up-and-coming biomaterials that recapitulate both properties into a package, offering an effective solution to turn the wound back into a healing state. In this article, the principles of antioxidant and antibacterial activity are summarized. The review starts with biological aspects, getting the readers to familiarize themselves with tissue barriers against infection. This is followed by the chemistry and mechanism of action of antioxidant and antibacterial materials (dual function). Eventually, the outlook and challenges are underlined to provide where the dual-function biomaterials are and where they are going in the future. It is expected that the present article inspires the designing of dual-function biomaterials to more advanced levels by providing the fundamentals and comparative points of view and paving the clinical way for these materials.


Assuntos
Antibacterianos , Antioxidantes , Antibacterianos/química , Antioxidantes/farmacologia , Antioxidantes/química , Cicatrização , Estresse Oxidativo , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química
13.
Bioeng Transl Med ; 8(1): e10325, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36684100

RESUMO

Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.

14.
Int J Biol Macromol ; 220: 1368-1389, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116596

RESUMO

The role of scaffolds in bone regeneration is of great importance. Here, the electrospun scaffolds of poly (3-hydroxybutyrate)-keratin (PHB-K)/nanohydroxyapatite (nHA) with different morphologies (long nanorods (HAR) and very short nanorods (HAP)) and weight percentages (up to 10 w/w%) of nHA were fabricated and characterized. The fibers integrity, the porosity of above 80%, and increase in pore size up to 16 µm were observed by adding nHA. The nanofibers crystallinity increased by 13.5 and 22.8% after the addition of HAR and HAP, respectively. The scaffolds contact angle decreased by almost 20° and 40° after adding 2.5 w/w% HAR and HAP, respectively. The tensile strength of the scaffolds increased from 2.99 ± 0.3 MPa for PHB-K to 6.44 ± 0.16 and 9.27 ± 0.04 MPa for the scaffolds containing 2.5 w/w% HAR and HAP, respectively. After immersing the scaffolds into simulated body fluid (SBF), the Ca concentration decreased by 55% for HAR- and 73% for HAP-containing scaffolds, showing the bioactivity of nHA-containing scaffolds. The results of cell attachment, proliferation, and viability of MG-63 cells cultured on the nanocomposites showed the positive effects of nHA. The results indicate that the nanocomposite scaffolds, especially HAP-containing ones, can be suitable for bone tissue engineering applications.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Ácido 3-Hidroxibutírico , Durapatita , Queratinas , Poliésteres/farmacologia , Engenharia Tecidual/métodos
15.
J Control Release ; 351: 50-80, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35934254

RESUMO

The site-specific delivery of antitumor agents is of importance for providing effective cancer suppression. Poor bioavailability of anticancer compounds and the presence of biological barriers prevent their accumulation in tumor sites. These obstacles can be overcome using liposomal nanostructures. The challenges in cancer chemotherapy and stimuli-responsive nanocarriers are first described in the current review. Then, stimuli-responsive liposomes including pH-, redox-, enzyme-, light-, thermo- and magneto-sensitive nanoparticles are discussed and their potential for delivery of anticancer drugs is emphasized. The pH- or redox-sensitive liposomes are based on internal stimulus and release drug in response to a mildly acidic pH and GSH, respectively. The pH-sensitive liposomes can mediate endosomal escape via proton sponge. The multifunctional liposomes responsive to both redox and pH have more capacity in drug release at tumor site compared to pH- or redox-sensitive alone. The magnetic field and NIR irradiation can be exploited for external stimulation of liposomes. The light-responsive liposomes release drugs when they are exposed to irradiation; thermosensitive-liposomes release drugs at a temperature of >40 °C when there is hyperthermia; magneto-responsive liposomes release drugs in presence of magnetic field. These smart nanoliposomes also mediate co-delivery of drugs and genes in synergistic cancer therapy. Due to lack of long-term toxicity of liposomes, they can be utilized in near future for treatment of cancer patients.


Assuntos
Antineoplásicos , Hipertermia Induzida , Neoplasias , Humanos , Lipossomos/química , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Neoplasias/tratamento farmacológico , Concentração de Íons de Hidrogênio
16.
Biomater Adv ; 137: 212809, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35929249

RESUMO

Macroporous scaffolds with bioactivity and magnetic properties can be a good candidate for bone regeneration and hyperthermia. In addition, modifying the surface of the scaffolds with biocompatible materials can increase their potential for in vivo applications. Here, we developed a multifunctional nanocomposite Mg2SiO4-CuFe2O4 scaffold for bone regeneration and hyperthermia. The surface of scaffold was coated with various concentrations of poly-3-hydroxybutyrate (P3HB, 1-5% (w/v)). It was observed that 3% (w/v) of P3HB provided a favorable combination of porosity (79 ± 2.1%) and compressive strength (3.2 ± 0.11 MPa). The hyperthermia potential of samples was assessed in the presence of various magnetic fields in vitro. The coated scaffolds showed a lower degradation rate than the un-coated one up to 35 days of soaking in simulated biological medium. Due to the porous and specific morphology of P3HB, it was found that in vitro bioactivity and cell attachment were increased on the scaffold. Moreover, it was observed that the P3HB coating improved the cell viability, alkaline phosphatase activity, and mineralization of the scaffold. Finally, we studied the bone formation ability of the scaffolds in vivo, and implanted the developed scaffold in the rat's femur for 8 weeks. Micro-computed tomography results including bone volume fraction and trabecular thickness exhibited an improvement in the bone regeneration of the coated scaffold compared to the control. The overall results of this study introduce a highly macroporous scaffold with multifunctional performance, noticeable ability in bone regeneration, and hyperthermia properties for osteosarcoma.


Assuntos
Hipertermia Induzida , Animais , Regeneração Óssea , Osso e Ossos , Fenômenos Magnéticos , Ratos , Microtomografia por Raio-X
17.
Semin Cancer Biol ; 86(Pt 2): 396-419, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35700939

RESUMO

Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.


Assuntos
Dendrímeros , Nanopartículas , Neoplasias , Humanos , Dendrímeros/química , Dendrímeros/uso terapêutico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Nanotecnologia , Neoplasias/tratamento farmacológico
18.
Polymers (Basel) ; 14(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35566804

RESUMO

Polymers, due to their high molecular weight, tunable architecture, functionality, and buffering effect for endosomal escape, possess unique properties as a carrier or prophylactic agent in preventing pandemic outbreak of new viruses. Polymers are used as a carrier to reduce the minimum required dose, bioavailability, and therapeutic effectiveness of antiviral agents. Polymers are also used as multifunctional nanomaterials to, directly or indirectly, inhibit viral infections. Multifunctional polymers can interact directly with envelope glycoproteins on the viral surface to block fusion and entry of the virus in the host cell. Polymers can indirectly mobilize the immune system by activating macrophages and natural killer cells against the invading virus. This review covers natural and synthetic polymers that possess antiviral activity, their mechanism of action, and the effect of material properties like chemical composition, molecular weight, functional groups, and charge density on antiviral activity. Natural polymers like carrageenan, chitosan, fucoidan, and phosphorothioate oligonucleotides, and synthetic polymers like dendrimers and sialylated polymers are reviewed. This review discusses the steps in the viral replication cycle from binding to cell surface receptors to viral-cell fusion, replication, assembly, and release of the virus from the host cell that antiviral polymers interfere with to block viral infections.

19.
ACS Appl Bio Mater ; 5(4): 1731-1743, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35380779

RESUMO

In the current study, the physicochemical and biological properties of tetracycline-loaded core-shell nanoparticles (Tet/Ni0.5Co0.5Fe2O4/SiO2 and Tet/CoFe2O4/SiO2) were investigated. The antibacterial activity of nanoparticles alone and in combination with tetracycline was investigated against a number of Gram-positive and Gram-negative bacteria for determining minimum inhibitory concentration (MIC) values. The MIC of Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles turned out to be significantly higher than that of Tet/CoFe2O4/SiO2 nanoparticles. Furthermore, Tet/Ni0.5Co0.5Fe2O4/SiO2 nanoparticles exhibited potent antibiofilm activity against pathogenic bacteria compared to Tet/CoFe2O4/SiO2 nanoparticles. The drug delivery potential of both carriers was assessed in vitro up to 124 h at different pH levels and it was found that the drug release rate was increased in acidic conditions. The cytotoxicity of nanoparticles was evaluated against a skin cancer cell line (melanoma A375) and a normal cell line (HFF). Our findings showed that Tet/Ni0.5Co0.5Fe2O4/SiO2 had greater cytotoxicity than CoFe2O4/SiO2 against the A375 cell line, whereas both synthesized nanoparticles had no significant cytotoxic effects on the normal cell line. Nonetheless, the biocompatibility of nanoparticles was assessed in vivo and the interaction of nanoparticles with the kidney was scrutinized up to 14 days. The overall results of the present study implied that the synthesized multifunctional magnetic nanoparticles with drug delivery potential, anticancer activity, and antibacterial activity are promising for biomedical applications.


Assuntos
Antineoplásicos , Nanopartículas de Magnetita , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Biofilmes , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanopartículas de Magnetita/química , Dióxido de Silício/química , Tetraciclina/farmacologia
20.
Int J Biol Macromol ; 202: 241-255, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35041881

RESUMO

A cancer nanotheranostic system was fabricated based on mesoporous silica@chitosan@gold (MCM@CS@Au) nanosystem targeted by aptamer toward the MUC-1 positive tumor cells. Subsequently, curcumin as an efficient herbal anticancer drug was first encapsulated into chitosan-triphosphate nanoparticles and then the resulted nanoparticle was loaded into the nanosystem (MCM@CS@Au-Apt). The nanosystem successful fabrication was approved at each synthesis step through FTIR, XRD, BET, DLS, FE-SEM, HRTEM, and fluorescence spectroscopy. Besides, the interaction between aptamer and curcumin was evaluated using full atomistic molecular dynamics simulations. The mechanism of curcumin release was likewise investigated through different kinetic models. Afterwards, the potential of the designed nanosystem in targeted imaging, and drug delivery was evaluated using fluorescence microscopy and flow cytometry. It was found that the energy transfer between the base pairs in the hairpin of double strands of DNA aptamer acts as a quencher for MCM@CS@Au fluorescence culminating in an "on/off" optical biosensor. On the other hand, the presence of pH-sensitive chitosan nanoparticles creates smart nanosystem to deliver more curcumin into the desired cells. Indeed, when the aptamer specifically binds to the MUC-1 receptor, its double strands separate under the low pH condition, leading to the drug release and the recovery of the fluorescence ("On" state). Based on the toxicity results, this nanosystem had more toxicity toward the MUC-1-positive tumor cells than MUC-1-negative cells, representing its selective targeting. Therefore, this nanosystem could be introduced as a smart anticancer nanotheranostic system for tracing particular biomarkers (MUC-1), non-invasive fluorescence imaging, and targeted curcumin delivery.


Assuntos
Técnicas Biossensoriais , Quitosana , Nanopartículas Metálicas , Nanopartículas , Neoplasias , Quitosana/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Ouro/química , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Medicina de Precisão , Dióxido de Silício/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...