Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 174: 113218, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34952405

RESUMO

Ecological baselines for the structure and functioning of ecosystems in the absence of human activity can provide essential information on their health status. The Glorieuses islands are located in the Western Indian Ocean (WIO) and can be considered as "pristine" ecosystems that have not been subjected to anthropogenic pressure. Their nutrient context and the microbial assemblages were assessed by determining the abundance of heterotrophic prokaryotes (archaea and bacteria), picocyanobacteria, picoeukaryotes, microphytoplankton and protozooplankton communities in five stations, during two contrasted periods (November 2015 and May 2016). Chlorophyll-a concentrations were always under 1 µg/L and associated to very low levels in orthophosphates, nitrate and dissolved organic carbon, revealing an ultra-oligotrophic status for the Glorieuses waters. Picocyanobacteria confirmed the ultra-oligotrophic status with a predominance of Synechococcus. Zeaxanthin associated with the presence of picocyanobacteria represented the major pigment in both surveys. Three indices of diversity (species richness, Shannon and Pielou indexes) from microscopy observations highlighted the difference of diversity in microphytoplankton between the surveys. A focus on a 16S metabarcoding approach showed a high dominance of picocyanobacteria, Alpha- and Gammaproteobacteria, regardless of station or period. Multivariate analyses (co-inertia analyses) revealed a strong variability of ecological conditions between the two periods, with (i) high nutrient concentrations and heterotrophic nanoflagellate abundance in November 2015, and (ii) high heterotrophic prokaryote and picoeukaryote abundance in May 2016. The impact of a category 5 tropical cyclone (Fantala) on the regional zone in April 2016 is also advanced to explain these contrasted situations. Relative importance of top-down factors between bacterial and heterotrophic nanoflagellates was observed in November 2015 with an active microbial food web. All the results indicate that three microbial indexes potentially can be considered to assess the ecological change in Glorieuses marine waters.


Assuntos
Microbiota , Synechococcus , Efeitos Antropogênicos , Recifes de Corais , Matéria Orgânica Dissolvida , Humanos , Oceano Índico , Plâncton
2.
Sci Rep ; 10(1): 20821, 2020 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-33257705

RESUMO

Understanding colonization of new habitats and ecological successions is key to ecosystem conservation. However, studies on primary successions are scarce for reef-building corals, due to the rarity of newly formed substratum and the long-term monitoring efforts required for their long life cycle and slow growth rate. We analysed data describing the diversity, structure and demography of coral assemblages on lava flows of different ages and coral reefs at Reunion Island, to evaluate the strength and mechanisms of succession, and its agreement to the theoretical models. No significant differences were observed between the two habitats for most structure and demographic descriptors. In contrast, species richness and composition differentiated coral reefs from lava flows, but were not related to the age of the lava flow. We observed a strong dominance of Pocillopora colonies, which underline the opportunistic nature of this taxa, with life-history traits advantageous to dominance on primary and secondary successional stages. Although some results argue in favor of the tolerance model of succession, the sequences of primary successions as theorized in other ecosystems were difficult to observe, which is likely due to the high frequency and intensity of disturbances at Reunion, that likely distort or set back the expected successional sequences.


Assuntos
Antozoários/crescimento & desenvolvimento , Ecossistema , Erupções Vulcânicas , Animais , Biodiversidade , Conservação dos Recursos Naturais , Oceano Índico , Ilhas , Modelos Biológicos , Dinâmica Populacional
3.
Nat Ecol Evol ; 3(9): 1341-1350, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31406279

RESUMO

Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.


Assuntos
Antozoários , Recifes de Corais , Animais , Clima , Mudança Climática , Ecossistema , Humanos
4.
PeerJ ; 6: e5305, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30083452

RESUMO

BACKGROUND: High sea surface temperatures resulted in widespread coral bleaching and mortality in Mayotte Island (northern Mozambique channel, Indian Ocean: 12.1°S, 45.1°E) in April-June 2010. METHODS: Twenty three representative coral genera were sampled quantitatively for size class distributions during the peak of the bleaching event to measure its impact. RESULTS: Fifty two percent of coral area was impacted, comprising 19.3% pale, 10.7% bleached, 4.8% partially dead and 17.5% recently dead. Acropora, the dominant genus, was the second most susceptible to bleaching (22%, pale and bleached) and mortality (32%, partially dead and dead), only exceeded by Pocillopora (32% and 47%, respectively). The majority of genera showed intermediate responses, and the least response was shown by Acanthastrea and Leptastrea (6% pale and bleached). A linear increase in bleaching susceptibility was found from small colonies (<2.5 cm, 83% unaffected) to large ones (>80 cm, 33% unaffected), across all genera surveyed. Maximum mortality in 2010 was estimated at 32% of coral area or biomass, compared to half that (16%), by colony abundance. DISCUSSION: Mayotte reefs have displayed a high level of resilience to bleaching events in 1983, 1998 and the 2010 event reported here, and experienced a further bleaching event in 2016. However, prospects for continued resilience are uncertain as multiple threats are increasing: the rate of warming experienced (0.1 °C per decade) is some two to three times less than projected warming in coming decades, the interval between severe bleaching events has declined from 16 to 6 years, and evidence of chronic mortality from local human impacts is increasing. The study produced four recommendations for reducing bias when monitoring and assessing coral bleaching: coral colony size should be measured, unaffected colonies should be included in counts, quadrats or belt transects should be used and weighting coefficients in the calculation of indices should be used with caution.

5.
Ecol Evol ; 8(2): 1411-1426, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29375807

RESUMO

Here, we examined the genetic variability in the coral genus Pocillopora, in particular within the Primary Species Hypothesis PSH09, identified by Gélin, Postaire, Fauvelot and Magalon (2017) using species delimitation methods [also named Pocillopora eydouxi/meandrina complex sensu, Schmidt-Roach, Miller, Lundgren, & Andreakis (2014)] and which was found to split into three secondary species hypotheses (SSH09a, SSH09b, and SSH09c) according to assignment tests using multi-locus genotypes (13 microsatellites). From a large sampling (2,507 colonies) achieved in three marine provinces [Western Indian Ocean (WIO), Tropical Southwestern Pacific (TSP), and Southeast Polynesia (SEP)], genetic structuring analysis conducted with two clustering analyses (structure and DAPC) using 13 microsatellites revealed that SSH09a was restricted to the WIO while SSH09b and SSH09c were almost exclusively in the TSP and SEP. More surprisingly, each SSH split into two to three genetically differentiated clusters, found in sympatry at the reef scale, leading to a pattern of nested hierarchical levels (PSH > SSH > cluster), each level hiding highly differentiated genetic groups. Thus, rather than structured populations within a single species, these three SSHs, and even the eight clusters, likely represent distinct genetic lineages engaged in a speciation process or real species. The issue is now to understand which hierarchical level (SSH, cluster, or even below) corresponds to the species one. Several hypotheses are discussed on the processes leading to this pattern of mixed clusters in sympatry, evoking formation of reproductive barriers, either by allopatric speciation or habitat selection.

6.
Rapid Commun Mass Spectrom ; 30(3): 433-46, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26754137

RESUMO

RATIONALE: Studies of organic matter fluxes in coral reefs are historically based on physical and biogeochemical approaches. It is important to link these approaches to community analysis as the abundance and behaviour of species, populations or trophic groups can have a profound effect on nutrient budgets. METHODS: We determined the carbon and nitrogen isotopic compositions of coral reef organic matter sources and macro-benthic invertebrate communities using a Europa Geo 20/20 isotope ratio mass spectrometer interfaced to an ANCA-SL elemental analyzer in continuous flow mode. Isotopic ecology metrics and a mixing model were used to analyze and interpret the data. RESULTS: The coral reef macro-invertebrate community principally relies on detrital or recycled food sources. An increased reliance on reef nitrogen-derived sources was observed in the cold-dry season. The community food-web lengths differ noticeably across the coral reef and reflect the characteristics and origin of organic matter reservoirs. CONCLUSIONS: Anthropogenic and terrestrial inputs lead to a loss of biological diversity. Exclusive dominance of suspension-feeding species is observed in areas receiving direct surface riverine particulate organic matter. The accumulation of sediment organic matter in eutrophic areas leads to dominance of deposit-feeding species. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Invertebrados/química , Espectrometria de Massas/métodos , Isótopos de Nitrogênio/análise , Animais , Biodiversidade , Isótopos de Carbono/análise , Recifes de Corais , Invertebrados/classificação , Espectrometria de Massas/instrumentação
7.
PLoS One ; 3(8): e3039, 2008 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-18728776

RESUMO

Coral reefs have emerged as one of the ecosystems most vulnerable to climate variation and change. While the contribution of a warming climate to the loss of live coral cover has been well documented across large spatial and temporal scales, the associated effects on fish have not. Here, we respond to recent and repeated calls to assess the importance of local management in conserving coral reefs in the context of global climate change. Such information is important, as coral reef fish assemblages are the most species dense vertebrate communities on earth, contributing critical ecosystem functions and providing crucial ecosystem services to human societies in tropical countries. Our assessment of the impacts of the 1998 mass bleaching event on coral cover, reef structural complexity, and reef associated fishes spans 7 countries, 66 sites and 26 degrees of latitude in the Indian Ocean. Using Bayesian meta-analysis we show that changes in the size structure, diversity and trophic composition of the reef fish community have followed coral declines. Although the ocean scale integrity of these coral reef ecosystems has been lost, it is positive to see the effects are spatially variable at multiple scales, with impacts and vulnerability affected by geography but not management regime. Existing no-take marine protected areas still support high biomass of fish, however they had no positive affect on the ecosystem response to large-scale disturbance. This suggests a need for future conservation and management efforts to identify and protect regional refugia, which should be integrated into existing management frameworks and combined with policies to improve system-wide resilience to climate variation and change.


Assuntos
Antozoários/crescimento & desenvolvimento , Clima , Efeito Estufa , Água do Mar , Animais , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Peixes , Oceano Índico , Quênia , Oceanos e Mares , Densidade Demográfica , Tanzânia
8.
Mar Pollut Bull ; 56(4): 704-22, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18325541

RESUMO

The ability of the two synthetic marine biotic indices, AMBI and M-AMBI, to account for changes in the ecological quality of coastal soft bottoms of Reunion Island according to disturbances was assessed from macrobenthic samples collected in five sectors between 1994 and 2004. Samples were collected under non-perturbed conditions and at two sites subjected to heavy organic enrichment. Both indices are based on a classification of macrofauna into ecological groups (EG), and their transfer to tropical waters required some adaptations. These indices proved efficient in detecting a degradation of habitat quality. Their use resulted in the classification of all sites sampled between 1996 and 1998 as "good" or "high". M-AMBI nevertheless tended to result in the attribution of a slightly worse ecological quality status than AMBI. Together with an update of the EG species list for the Indian Ocean area, our results support the extension of both indices for the assessment of tropical soft bottoms.


Assuntos
Ecossistema , Sedimentos Geológicos , Biologia Marinha/métodos , Animais , Geografia , Ilhas do Oceano Índico , Invertebrados/fisiologia , Fatores de Tempo
9.
Mar Pollut Bull ; 52(8): 865-80, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16631815

RESUMO

Temporal changes in the composition of soft bottom macrobenthic assemblages at Reunion Island (Southwest Indian Ocean) were studied in the context of a long-term environmental monitoring programme studying the impacts of effluents of industrial sugar cane refineries that are transferred to shallow and deep coastal environments by different pathways: surface discharge and deep underground injection. Seven stations (between 20 and 160 m depth) were surveyed between 1994 and 2003 on the industrial zone. One additional station was surveyed on a reference site. Spatio-temporal changes in the composition of macrobenthic communities were assessed using several diversity indices, ABC curves, MDS and associated ANOSIM tests and biotic indices. Among the 171 taxa recorded, polychaetes were dominant (89 species), followed by crustaceans and molluscs. The analysis of spatial changes in the composition of macrobenthos showed the existence of distinct benthic communities along the depth gradient. Temporal changes in macrobenthos composition were most prominent at the shallowest station. They mainly corresponded to the decline of several initially dominant taxa and the increase of the Eunicid polychaete Diopatra cuprea. This station further showed increasing macrofaunal abundance, biomass and sediment organic content over time, concomitant with decreasing sediment grain sizes. In deeper environments, temporal changes were much smaller. Macrofaunal abundance and species richness increased progressively, suggesting a moderate impact on benthic ecosystems resulting from slight enrichments due to effluents rich in organic matter. Our results highlight an original response to disturbance pattern involving opportunistic Eunicidae species (D. cuprea) not previously described. Moreover, they allow for the comparison of the impact on macrofauna caused by industrial effluents exported by two distinct and different pathways in a tropical coastal high-energy marine environment.


Assuntos
Biodiversidade , Monitoramento Ambiental , Sedimentos Geológicos , Resíduos Industriais , Invertebrados/fisiologia , Poluentes Químicos da Água , Análise de Variância , Animais , Biomassa , Sedimentos Geológicos/análise , Oceano Índico , Invertebrados/classificação , Tamanho da Partícula , Dinâmica Populacional , Reunião , Fatores de Tempo , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...