Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 376(6593): 603-608, 2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35511988

RESUMO

The active chemical state of zinc (Zn) in a zinc-copper (Zn-Cu) catalyst during carbon dioxide/carbon monoxide (CO2/CO) hydrogenation has been debated to be Zn oxide (ZnO) nanoparticles, metallic Zn, or a Zn-Cu surface alloy. We used x-ray photoelectron spectroscopy at 180 to 500 millibar to probe the nature of Zn and reaction intermediates during CO2/CO hydrogenation over Zn/ZnO/Cu(211), where the temperature is sufficiently high for the reaction to rapidly turn over, thus creating an almost adsorbate-free surface. Tuning of the grazing incidence angle makes it possible to achieve either surface or bulk sensitivity. Hydrogenation of CO2 gives preference to ZnO in the form of clusters or nanoparticles, whereas in pure CO a surface Zn-Cu alloy becomes more prominent. The results reveal a specific role of CO in the formation of the Zn-Cu surface alloy as an active phase that facilitates efficient CO2 methanol synthesis.

2.
ACS Nano ; 15(9): 14985-14995, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34491033

RESUMO

Metal halides are a class of layered materials with promising electronic and magnetic properties persisting down to the two-dimensional limit. While most recent studies focused on the trihalide components of this family, the rather unexplored metal dihalides are also van der Waals layered systems with distinctive magnetic properties. Here we show that the dihalide NiBr2 grows epitaxially on a Au(111) substrate and exhibits semiconducting and magnetic behavior starting from a single layer. Through a combination of a low-temperature scanning-tunneling microscopy, low-energy electron diffraction, X-ray photoelectron spectroscopy, and photoemission electron microscopy, we identify two competing layer structures of NiBr2 coexisting at the interface and a stoichiometrically pure layer-by-layer growth beyond. Interestingly, X-ray absorption spectroscopy measurements revealed a magnetically ordered state below 27 K with in-plane magnetic anisotropy and zero-remanence in the single layer of NiBr2/Au(111), which we attribute to a noncollinear magnetic structure. The combination of such two-dimensional magnetic order with the semiconducting behavior down to the 2D limit offers the attractive perspective of using these films as ultrathin crystalline barriers in tunneling junctions and low-dimensional devices.

3.
J Phys Chem C Nanomater Interfaces ; 117(33): 17024-17032, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23991229

RESUMO

Adsorption and coadsorption of carbon monoxide and oxygen on different types of Au clusters on R(15 × 3)C/W(110) and R(15 × 12)C/W(110), respectively, are studied with respect to the catalytic behavior for oxidation of CO as well as of surface carbon. Carburization of the W(110) surface results in a weakening of the adsorption bond for molecularly adsorbed CO. Dissociation of carbon monoxide, which occurs on W(110), is reduced on the low-carbon coverage R(15 × 12) surface and completely suppressed on the carbon-saturated R(15 × 3) phase. Deposition of gold results in a blocking of adsorption sites for molecularly adsorbed CO and reopening of the dissociation channel. Probably the latter is associated with the existence of double-layer gold clusters and islands. At room temperature the gold clusters on both carburized templates are stable in CO atmosphere as shown by in-situ STM measurements. In contrast, exposure to oxygen alters the clusters on the R(15 × 12) surface, implying dissociation of oxygen not only on the substrate but also on or in immediate vicinity of the gold clusters. On the Au-free carburized templates oxygen adsorbs dissociatively and is released as CO at temperatures beyond 800 K due to reaction with carbon atoms from the templates. Deposition of gold enhances the desorption rate of the formed CO at the low-temperature end of the recombinative CO desorption range, indicating a promoting effect of gold for oxidation of surface carbon. In contrast, low-temperature CO oxidation catalyzed by the deposited Au clusters is not observed. Two reasons could be identified: (1) weakly bound CO with desorption temperatures between 100 and 200 K (as reported for other related systems) is not observed, and (2) oxygen atoms are bonded too strongly to the templates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...