Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 186
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38828931

RESUMO

BACKGROUND: Numerous studies demonstrate associations between serum concentrations of 25-hydroxyvitamin D (25[OH]D) and a variety of common disorders, including musculoskeletal, metabolic, cardiovascular, malignant, autoimmune, and infectious diseases. Although a causal link between serum 25(OH)D concentrations and many disorders has not been clearly established, these associations have led to widespread supplementation with vitamin D and increased laboratory testing for 25(OH)D in the general population. The benefit-risk ratio of this increase in vitamin D use is not clear, and the optimal vitamin D intake and the role of testing for 25(OH)D for disease prevention remain uncertain. OBJECTIVE: To develop clinical guidelines for the use of vitamin D (cholecalciferol [vitamin D3] or ergocalciferol [vitamin D2]) to lower the risk of disease in individuals without established indications for vitamin D treatment or 25(OH)D testing. METHODS: A multidisciplinary panel of clinical experts, along with experts in guideline methodology and systematic literature review, identified and prioritized 14 clinically relevant questions related to the use of vitamin D and 25(OH)D testing to lower the risk of disease. The panel prioritized randomized placebo-controlled trials in general populations (without an established indication for vitamin D treatment or 25[OH]D testing), evaluating the effects of empiric vitamin D administration throughout the lifespan, as well as in select conditions (pregnancy and prediabetes). The panel defined "empiric supplementation" as vitamin D intake that (a) exceeds the Dietary Reference Intakes (DRI) and (b) is implemented without testing for 25(OH)D. Systematic reviews queried electronic databases for publications related to these 14 clinical questions. The Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) methodology was used to assess the certainty of evidence and guide recommendations. The approach incorporated perspectives from a patient representative and considered patient values, costs and resources required, acceptability and feasibility, and impact on health equity of the proposed recommendations. The process to develop this clinical guideline did not use a risk assessment framework and was not designed to replace current DRI for vitamin D. RESULTS: The panel suggests empiric vitamin D supplementation for children and adolescents aged 1 to 18 years to prevent nutritional rickets and because of its potential to lower the risk of respiratory tract infections; for those aged 75 years and older because of its potential to lower the risk of mortality; for those who are pregnant because of its potential to lower the risk of preeclampsia, intra-uterine mortality, preterm birth, small-for-gestational-age birth, and neonatal mortality; and for those with high-risk prediabetes because of its potential to reduce progression to diabetes. Because the vitamin D doses in the included clinical trials varied considerably and many trial participants were allowed to continue their own vitamin D-containing supplements, the optimal doses for empiric vitamin D supplementation remain unclear for the populations considered. For nonpregnant people older than 50 years for whom vitamin D is indicated, the panel suggests supplementation via daily administration of vitamin D, rather than intermittent use of high doses. The panel suggests against empiric vitamin D supplementation above the current DRI to lower the risk of disease in healthy adults younger than 75 years. No clinical trial evidence was found to support routine screening for 25(OH)D in the general population, nor in those with obesity or dark complexion, and there was no clear evidence defining the optimal target level of 25(OH)D required for disease prevention in the populations considered; thus, the panel suggests against routine 25(OH)D testing in all populations considered. The panel judged that, in most situations, empiric vitamin D supplementation is inexpensive, feasible, acceptable to both healthy individuals and health care professionals, and has no negative effect on health equity. CONCLUSION: The panel suggests empiric vitamin D for those aged 1 to 18 years and adults over 75 years of age, those who are pregnant, and those with high-risk prediabetes. Due to the scarcity of natural food sources rich in vitamin D, empiric supplementation can be achieved through a combination of fortified foods and supplements that contain vitamin D. Based on the absence of supportive clinical trial evidence, the panel suggests against routine 25(OH)D testing in the absence of established indications. These recommendations are not meant to replace the current DRIs for vitamin D, nor do they apply to people with established indications for vitamin D treatment or 25(OH)D testing. Further research is needed to determine optimal 25(OH)D levels for specific health benefits.

2.
Endocr Rev ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38676447

RESUMO

The 6th International Conference, "Controversies in Vitamin D," was convened to discuss controversial topics, such as vitamin D metabolism, assessment, actions, and supplementation. Novel insights into vitamin D mechanisms of action suggest links with conditions that do not depend only on reduced solar exposure or diet intake and that can be detected with distinctive noncanonical vitamin D metabolites. Optimal 25-hydroxyvitamin D (25(OH)D) levels remain debated. Varying recommendations from different societies arise from evaluating different clinical or public health approaches. The lack of assay standardization also poses challenges in interpreting data from available studies, hindering rational data pooling and meta-analyses. Beyond the well-known skeletal features, interest in vitamin D's extraskeletal effects has led to clinical trials on cancer, cardiovascular risk, respiratory effects, autoimmune diseases, diabetes, and mortality. The initial negative results are likely due to enrollment of vitamin D-replete individuals. Subsequent post hoc analyses have suggested, nevertheless, potential benefits in reducing cancer incidence, autoimmune diseases, cardiovascular events, and diabetes. Oral administration of vitamin D is the preferred route. Parenteral administration is reserved for specific clinical situations. Cholecalciferol is favored due to safety and minimal monitoring requirements. Calcifediol may be used in certain conditions, while calcitriol should be limited to specific disorders in which the active metabolite is not readily produced in vivo. Further studies are needed to investigate vitamin D effects in relation to the different recommended 25(OH)D levels and the efficacy of the different supplementary formulations in achieving biochemical and clinical outcomes within the multifaced skeletal and extraskeletal potential effects of vitamin D.

3.
Eur Urol Oncol ; 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37926618

RESUMO

BACKGROUND: Guidelines recommend dual-energy x-ray absorptiometry (DXA) screening to assess fracture risk and benefit from antiresorptive therapy in men with metastatic hormone-sensitive prostate cancer (mHSPC) on androgen deprivation therapy (ADT). However, <30% of eligible patients undergo DXA screening. Biomechanical computed tomography (BCT) is a radiomic technique that measures bone mineral density (BMD) and bone strength from computed tomography (CT) scans. OBJECTIVE: To evaluate the (1) correlations between BCT- and DXA-assessed BMD, and (2) associations between BCT-assessed metrics and subsequent fracture. DESIGN, SETTING, AND PARTICIPANTS: A multicenter retrospective cohort study was conducted among patients with mHSPC between 2013 and 2020 who received CT abdomen/pelvis or positron emission tomography/CT within 48 wk before ADT initiation and during follow-up (48-96 wk after ADT initiation). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We used univariate logistic regression to assess the associations between BCT measurements and the primary outcomes of subsequent pathologic and nonpathologic fractures. RESULTS AND LIMITATIONS: Among 91 eligible patients, the median ([interquartile range) age was 67 yr (62-75), 44 (48.4%) were White, and 41 (45.1%) were Black. During the median follow-up of 82 wk, 17 men (18.6%) developed a pathologic and 15 (16.5%) a nonpathologic fracture. BCT- and DXA-assessed femoral-neck BMD T scores were strongly correlated (R2 = 0.93). On baseline CT, lower BCT-assessed BMD (odds ratio [OR] 1.80, 95% confidence interval or CI [1.10, 3.25], p = 0.03) was associated with an increased risk of a pathologic fracture. Lower femoral strength (OR 1.63, 95% CI [0.99, 2.71], p = 0.06) was marginally associated with an increased risk of a pathologic fracture. Neither BMD (OR 1.52, 95% CI [0.95, 2.63], p = 0.11) nor strength (OR 1.14, 95% CI [0.75, 1.80], p = 0.57) was associated with a nonpathologic fracture. BCT identified nine (9.9%) men eligible for antiresorptive therapy, of whom four (44%) were not treated. Limitations include low fracture numbers resulting in lower power to detect fracture associations. CONCLUSIONS: Among men diagnosed with mHSPC, BCT assessments were strongly correlated with DXA, predicted subsequent pathologic fracture, and identified additional men indicated for antiresorptive therapy. PATIENT SUMMARY: We assess whether biomechanical computer tomography (BCT) from routine computer tomography (CT) scans can identify fracture risk among patients recently diagnosed with metastatic prostate cancer. We find that BCT and dual-energy x-ray absorptiometry-derived bone mineral density are strongly correlated and that BCT accurately identifies the risk for future fracture. BCT may enable broader fracture risk assessment and facilitate timely interventions to reduce fracture risk in metastatic prostate cancer patients.

4.
Commun Biol ; 6(1): 766, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479880

RESUMO

Postnatal cell fate is postulated to be primarily determined by the local tissue microenvironment. Here, we find that Mediator 1 (Med1) dependent epigenetic mechanisms dictate tissue-specific lineage commitment and progression of dental epithelia. Deletion of Med1, a key component of the Mediator complex linking enhancer activities to gene transcription, provokes a tissue extrinsic lineage shift, causing hair generation in incisors. Med1 deficiency gives rise to unusual hair growth via primitive cellular aggregates. Mechanistically, we find that MED1 establishes super-enhancers that control enamel lineage transcription factors in dental stem cells and their progenies. However, Med1 deficiency reshapes the enhancer landscape and causes a switch from the dental transcriptional program towards hair and epidermis on incisors in vivo, and in dental epithelial stem cells in vitro. Med1 loss also provokes an increase in the number and size of enhancers. Interestingly, control dental epithelia already exhibit enhancers for hair and epidermal key transcription factors; these transform into super-enhancers upon Med1 loss suggesting that these epigenetic mechanisms cause the shift towards epidermal and hair lineages. Thus, we propose a role for Med1 in safeguarding lineage specific enhancers, highlight the central role of enhancer accessibility in lineage reprogramming and provide insights into ectodermal regeneration.


Assuntos
Cabelo , Sequências Reguladoras de Ácido Nucleico , Animais , Camundongos , Epiderme , Fatores de Transcrição/genética , Esmalte Dentário
5.
J Steroid Biochem Mol Biol ; 232: 106352, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37330071

RESUMO

The vitamin D receptor with its ligand 1,25 dihydroxy vitamin D3 (1,25D3) regulates epidermal stem cell fate, such that VDR removal from Krt14 expressing keratinocytes delays re-epithelialization of epidermis after wound injury in mice. In this study we deleted Vdr from Lrig1 expressing stem cells in the isthmus of the hair follicle then used lineage tracing to evaluate the impact on re-epithelialization following injury. We showed that Vdr deletion from these cells prevents their migration to and regeneration of the interfollicular epidermis without impairing their ability to repopulate the sebaceous gland. To pursue the molecular basis for these effects of VDR, we performed genome wide transcriptional analysis of keratinocytes from Vdr cKO and control littermate mice. Ingenuity Pathway analysis (IPA) pointed us to the TP53 family including p63 as a partner with VDR, a transcriptional factor that is essential for proliferation and differentiation of epidermal keratinocytes. Epigenetic studies on epidermal keratinocytes derived from interfollicular epidermis showed that VDR is colocalized with p63 within the specific regulatory region of MED1 containing super-enhancers of epidermal fate driven transcription factor genes such as Fos and Jun. Gene ontology analysis further implicated that Vdr and p63 associated genomic regions regulate genes involving stem cell fate and epidermal differentiation. To demonstrate the functional interaction between VDR and p63, we evaluated the response to 1,25(OH)2D3 of keratinocytes lacking p63 and noted a reduction in epidermal cell fate determining transcription factors such as Fos, Jun. We conclude that VDR is required for the epidermal stem cell fate orientation towards interfollicular epidermis. We propose that this role of VDR involves cross-talk with the epidermal master regulator p63 through super-enhancer mediated epigenetic dynamics.


Assuntos
Receptor Cross-Talk , Receptores de Calcitriol , Animais , Camundongos , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Epiderme/metabolismo , Queratinócitos/metabolismo , Células Epidérmicas/metabolismo , Diferenciação Celular/genética , Fatores de Transcrição/metabolismo , Vitamina D/metabolismo
7.
Rev Endocr Metab Disord ; 24(2): 121-138, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36813995

RESUMO

This paper is one of the outcomes of the 5th International Conference "Controversies in Vitamin D" held in Stresa, Italy from 15 to 18 September 2021 as part of a series of annual meetings which was started in 2017. The scope of these meetings is to discuss controversial issues about vitamin D. Publication of the outcomes of the meeting in international journals allows a wide sharing of the most recent data with the medical and academic community. Vitamin D and malabsorptive gastrointestinal conditions was one of the topics discussed at the meeting and focus of this paper. Participants to the meeting were invited to review available literature on selected issues related to vitamin D and gastrointestinal system and to present their topic to all participants with the aim to initiate a discussion on the main outcomes of which are reported in this document. The presentations were focused on the possible bidirectional relationship between vitamin D and gastrointestinal malabsorptive conditions such as celiac disease, inflammatory bowel diseases (IBDs) and bariatric surgery. In fact, on one hand the impact of these conditions on vitamin D status was examined and on the other hand the possible role of hypovitaminosis D on pathophysiology and clinical course of these conditions was also evaluated. All examined malabsorptive conditions severely impair vitamin D status. Since vitamin D has known positive effects on bone this in turn may contribute to negative skeletal outcomes including reduced bone mineral density, and increased risk of fracture which may be mitigated by vitamin D supplementation. Due to the immune and metabolic extra-skeletal effects there is the possibility that low levels of vitamin D may negatively impact on the underlying gastrointestinal conditions worsening its clinical course or counteracting the effect of treatment. Therefore, vitamin D status assessment and supplementation should be routinely considered in all patients affected by these conditions. This concept is strengthened by the existence of a possible bidirectional relationship through which poor vitamin D status may negatively impact on clinical course of underlying disease. Sufficient elements are available to estimate the desired threshold vitamin D level above which a favourable impact on the skeleton in these conditions may be obtained. On the other hand, ad hoc controlled clinical trials are needed to better define this threshold for obtaining a positive effect of vitamin D supplementation on occurrence and clinical course of malabsorptive gastrointestinal diseases.


Assuntos
Fraturas Ósseas , Deficiência de Vitamina D , Humanos , Vitamina D/fisiologia , Deficiência de Vitamina D/epidemiologia , Fraturas Ósseas/tratamento farmacológico , Osso e Ossos , Progressão da Doença
8.
J Steroid Biochem Mol Biol ; 228: 106247, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36639037

RESUMO

The 24th Workshop on Vitamin D was held September 7-9, 2022 in Austin, Texas and covered a wide diversity of research in the vitamin D field from across the globe. Here, we summarize the meeting, individual sessions, awards and presentations given.


Assuntos
Deficiência de Vitamina D , Vitamina D , Humanos , Vitaminas
9.
Osteoporos Int ; 34(3): 551-561, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36580097

RESUMO

Osteoporosis care in men is suboptimal due to low rates of testing and treatment. Applying biomechanical computed tomography (BCT) analysis to existing CT scans, we found a high proportion of men with osteoporosis have never been diagnosed or treated. BCT may improve identification of patients at high risk of fracture. PURPOSE: Osteoporosis care in men is suboptimal due to low rates of DXA testing and treatment. Biomechanical computed tomography analysis (BCT) can be applied "opportunistically" to prior hip-containing CT scans to measure femoral bone strength and hip BMD. METHODS: In this retrospective, cross-sectional study, we used BCT in male veterans with existing CT scans to investigate the prevalence of osteoporosis, defined by hip BMD (T-score ≤ - 2.5) or fragile bone strength (≤ 3500 N). 577 men, age ≥ 65 with abdominal/pelvic CTs performed in 2017-2019, were randomly selected for BCT analysis. Clinical data were collected via electronic health records and used with the femoral neck BMD T-score from BCT to estimate 10-year hip fracture risks by FRAX. RESULTS: Prevalence of osteoporosis by BCT increased with age (13.5% age 65-74; 18.2% age 75-84; 34.3% age ≥ 85), with an estimated overall prevalence of 18.3% for men age ≥ 65. In those with osteoporosis (n = 108/577), only 38.0% (41/108) had a prior DXA and 18.6% (7/108) had received osteoporosis pharmacotherapy. Elevated hip fracture risk by FRAX (≥ 3%) did not fully capture those with fragile bone strength. In a multivariate logistic regression model adjusted for age, BMI, race, and CT location, end stage renal disease (odds ratio 7.4; 95% confidence interval 2.3-23.9), COPD (2.2; 1.2-4.0), and high-dose inhaled corticosteroid use (3.7; 1.2-11.8) were associated with increased odds of having osteoporosis by BCT. CONCLUSION: Opportunistic BCT in male veterans provides an additional avenue to identify patients who are at high risk of fractures.


Assuntos
Fraturas do Quadril , Osteoporose , Veteranos , Humanos , Masculino , Idoso , Idoso de 80 Anos ou mais , Densidade Óssea , Estudos Retrospectivos , Prevalência , Estudos Transversais , Absorciometria de Fóton/métodos , Osteoporose/diagnóstico por imagem , Osteoporose/epidemiologia , Osteoporose/complicações , Fraturas do Quadril/diagnóstico por imagem , Fraturas do Quadril/epidemiologia , Fraturas do Quadril/etiologia , Tomografia Computadorizada por Raios X/métodos
11.
Curr Osteoporos Rep ; 20(3): 186-193, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507293

RESUMO

PURPOSE OF REVIEW: To review the mechanisms by which vitamin D and its metabolites regulate the immune system to facilitate the ability of the body to prevent and/or treat SARS-CoV2 and other respiratory infections and encourage further research into the role that vitamin D supplementation plays in preventing/treating such infections. RECENT FINDINGS: Vitamin D deficiency is associated with an increased risk of SARS-CoV2 and other respiratory infections. Clinical trials in general demonstrate that correction of vitamin D deficiency reduces the risk of hospitalization, ICU admission, and death from SARS-CoV2 infection. The airway epithelium and alveolar macrophages express the enzyme, CYP27B1, that produces the active metabolite of vitamin D, 1,25(OH)2D, and the vitamin D receptor, VDR. Vitamin D and its metabolites promote the innate immune response, which provides the first line of defense against viral and bacterial infections while restricting the adaptive immune response, which if unchecked promotes the inflammatory response leading to the acute respiratory distress syndrome and death. The rationale for treating vitamin D deficiency to reduce the risk of SARS-CoV2 infection and supplementing patients with vitamin D early in the course of SARS-CoV2 infection rests primarily on the ability of vitamin D metabolites to promote an effective immune response to the infection.


Assuntos
COVID-19 , Deficiência de Vitamina D , Humanos , Imunidade Inata/fisiologia , RNA Viral , SARS-CoV-2 , Vitamina D/metabolismo , Deficiência de Vitamina D/complicações
12.
J Gen Intern Med ; 37(4): 853-861, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34981368

RESUMO

BACKGROUND: The relationship between vitamin D status and COVID-19-related clinical outcomes is controversial. Prior studies have been conducted in smaller, single-site, or homogeneous populations limiting adjustments for social determinants of health (race/ethnicity and poverty) common to both vitamin D deficiency and COVID-19 outcomes. OBJECTIVE: To evaluate the dose-response relationship between continuous 25(OH)D and risk for COVID-19-related hospitalization and mortality after adjusting for covariates associated with both vitamin D deficiency and COVID-19 outcomes. DESIGN: Retrospective cohort study. PATIENTS: Veteran patients receiving care in US Department of Veteran Affairs (VA) health care facilities with a positive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test and a blood 25(OH)D test between February 20, 2020, and November 8, 2020, followed for up to 60 days. MAIN MEASURES: Exposure was blood 25(OH)D concentration ascertained closest to and within 15 to 90 days preceding an index positive SARS-CoV-2 test. Co-primary study outcomes were COVID-19-related inpatient hospitalization requiring airborne, droplet, contact, or other isolation and mortality ascertained within 60 days of an index positive SARS-CoV-2 test. KEY RESULTS: Of 4,599 veterans with a positive SARS-CoV-2 test, vitamin D deficiency (< 20 ng/mL) was identified in 665 (14.5%); 964 (21.0%) were hospitalized; and 340 (7.4%) died. After adjusting for all covariates, including race/ethnicity and poverty, there was a significant independent inverse dose-response relationship between increasing continuous 25(OH)D concentrations (from 15 to 60 ng/mL) and decreasing probability of COVID-19-related hospitalization (from 24.1 to 18.7%, p=0.009) and mortality (from 10.4 to 5.7%, p=0.001). In modeling 25(OH)D as a log-transformed continuous variable, the greatest risk for hospitalization and death was observed at lower 25(OH)D concentrations. CONCLUSIONS: Continuous blood 25(OH)D concentrations are independently associated with COVID-19-related hospitalization and mortality in an inverse dose-response relationship in this large racially and ethnically diverse cohort of VA patients. Randomized controlled trials are needed to evaluate the impact of vitamin D supplementation on COVID-19-related outcomes.


Assuntos
COVID-19 , Vitamina D , COVID-19/terapia , Hospitalização , Humanos , Estudos Retrospectivos , SARS-CoV-2
13.
Rev Endocr Metab Disord ; 23(2): 279-285, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091881

RESUMO

Covid-19 has to date infected a confirmed 275 million people with 5.4 million, now dead, with the count rising every day. Although the virus, SARS-CoV2, causing Covid-19 infects many cells in the body, its infection of the upper and lower respiratory tract (upper airway epithelia and pulmonary alveolar pneumocytes and macrophages) causing what is now called a cytokine storm in the lungs is the major cause of morbidity and mortality. This results from a dysregulation of the innate immune system with an outpouring of proinflammatory cytokines and chemokines leading to abnormal activation of the adaptive immune pathway. Airway epithelia constitutively expresses CYP27B1, the enzyme producing the active vitamin D metabolite, 1,25(OH)2D, and the vitamin D receptor (VDR) for which 1,25(OH)2D is the ligand. Pulmonary alveolar macrophages, on the other hand, are induced to express both CYP27B1 and VDR by various pathogens including viruses and cytokines released from infected epithelia and other immune cells. Although not demonstrated for corona viruses like SARS-CoV2, for other viruses and other respiratory pathogens activation of innate immunity leading to increased local 1,25(OH)2D production has been shown to enhance viral neutralization and clearance while modulating the subsequent proinflammatory response. Whether such will be the case for SARS-CoV2 remains to be seen, but is currently being proposed and investigated. This mini review will discuss some of the mechanisms by which vitamin D may help reduce morbidity and mortality in this devastating pandemic.


Assuntos
COVID-19 , Vitamina D , Humanos , Imunidade Inata , RNA Viral , SARS-CoV-2
14.
Nat Aging ; 2(10): 874-875, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-37118286
15.
JBMR Plus ; 5(12): e10578, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34950833

RESUMO

Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation-sequencing (ChIP-seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand-independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

16.
Mol Cell Endocrinol ; 532: 111317, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015414

RESUMO

Two percent or less of the genome is used to transcribe mRNAs encoding proteins. Nearly all the remainder is utilized in transcribing non coding RNAs, the bulk of which are RNAs at least 200 base in length, long non coding RNAs (lncRNA). Their number is estimated to be about 28,000, but only a small fraction of lncRNAs are well characterized. That said lncRNAs have been found to regulate a very diverse array of biochemical and genomic functions. One of the transcription factors found to be regulated by and to regulate lncRNA is the vitamin D receptor (VDR). Like lncRNAs VDR is involved in the regulation of numerous biochemical and genomic processes, so it is not surprising that there would be a number of interactions between lncRNAs and VDR in their diverse functions. However, the study of these interactions is in its infancy. To date most attention has been paid to their interactions in cancer. Our own studies have focused on non melanoma skin cancers, keratinocyte carcinomas to be precise. Deletion of VDR from keratinocytes predisposes them to malignant transformation. Among a number of potential mechanisms we found that VDR deletion from these cells alters the lncRNA profile to a more oncogenic configuration, increasing the expression of well known oncogenic lncRNAs and decreasing the expression of well known tumor suppressor lncRNAs. Subsequent studies in other cancers have found similar associations between VDR and oncogenic lncRNAs with evidence of tumor specificity. To date these studies primarily reveal associations rather than causality, but causal links should be expected as research in this field continues to develop.


Assuntos
Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genes Supressores de Tumor , Proteínas de Neoplasias , Neoplasias , RNA Longo não Codificante , RNA Neoplásico , Receptores de Calcitriol , Vitamina D/farmacologia , Animais , Perfilação da Expressão Gênica , Humanos , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Neoplasias/genética , Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Receptores de Calcitriol/biossíntese , Receptores de Calcitriol/genética
17.
J Invest Dermatol ; 141(11): 2577-2586, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33862069

RESUMO

The calcium-sensing receptor (CaSR) drives essential calcium ion (Ca2+) and E-cadherin‒mediated processes in the epidermis, including differentiation, cell-to-cell adhesion, and epidermal barrier homeostasis in cells and in young adult mice. We now report that decreased CaSR expression leads to impaired Ca2+ signal propagation in aged mouse (aged >22 months) epidermis and human (aged >79 years, donor age) keratinocytes. Baseline cytosolic Ca2+ concentrations were higher, and capacitive Ca2+ entry was lower in aged than in young keratinocytes. As in Casr-knockout mice (EpidCaSR-/-), decreased CaSR expression led to decreased E-cadherin and phospholipase C-γ expression and to a compensatory upregulation of STIM1. Pretreatment with the CaSR agonist N-(3-[2-chlorophenyl]propyl)-(R)-alpha-methyl-3-methoxybenzylamine normalized Ca2+ propagation and E-cadherin organization after experimental wounding. These results suggest that age-related defects in CaSR expression dysregulate normal keratinocyte and epidermal Ca2+ signaling, leading to impaired E-cadherin expression, organization, and function. These findings show an innovative mechanism whereby Ca2+- and E-cadherin‒dependent functions are impaired in aging epidermis and suggest a new therapeutic approach by restoring CaSR function.


Assuntos
Sinalização do Cálcio/fisiologia , Adesão Celular/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Envelhecimento da Pele/fisiologia , Idoso de 80 Anos ou mais , Animais , Caderinas/fisiologia , Células Cultivadas , Humanos , Camundongos , Receptores de Detecção de Cálcio/agonistas , Molécula 1 de Interação Estromal/análise
18.
JBMR Plus ; 5(1): e10418, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33553985

RESUMO

The free hormone hypothesis postulates that only the nonbound fraction (the free fraction) of hormones that otherwise circulate in blood bound to their carrier proteins is able to enter cells and exert biologic effects. In this review, I will examine four hormone groups-vitamin D metabolites (especially 25OHD), thyroid hormones (especially thyroxine [T4]), sex steroids (especially testosterone), and glucocorticoids (especially cortisol)-that are bound to various degrees to their respective binding proteins-vitamin D-binding protein (DBP), thyroid-binding globulin (TBG), sex hormone-binding globulin (SHBG), and cortisol-binding globulin (CBG)-for which a strong case can be made that measurement of the free hormone level provides a better assessment of hormonal status than the measurement of total hormonal levels under conditions in which the binding proteins are affected in levels or affinities for the hormones to which they bind. I will discuss the rationale for this argument based on the free hormone hypothesis, discuss potential exceptions to the free hormone hypothesis, and review functions of the binding proteins that may be independent of their transport role. I will then review the complications involved with measuring the free hormone levels and the efforts to calculate those levels based on estimates of binding constants and levels of both total hormone and total binding protein. In this review, the major focus will be on DBP and free 25OHD, but the parallels and differences with the other binding proteins and hormones will be highlighted. Vitamin D and its metabolites, thyroid hormones, sex steroids, and glucocorticoids are transported in blood bound to serum proteins. The tightness of binding varies depending on the hormone and the binding protein such that the percent free varies from 0.03% for T4 and 25OHD to 4% for cortisol with testosterone at 2%. Although the major function of the primary carrier proteins (DBP, TBG, SHBG, and CBG) may be to transport their respective lipophilic hormones within the aqueous media that is plasma, these proteins may have other functions independent of their transport function. For most tissues, these hormones enter the cell as the free hormone presumably by diffusion (the free hormone hypothesis), although a few tissues such as the kidney and reproductive tissues express megalin/cubilin enabling by endocytosis protein-bound hormone to enter the cell. Measuring the free levels of these protein-bound hormones is likely to provide a better measure of the true hormone status than measuring the total levels in situations where the levels and/or affinities of the binding proteins are altered. Methods to measure free hormone levels are problematic as the free levels can be quite low, the methods require separation of bound and free that could disturb the steady state, and the means of separating bound and free are prone to error. Calculation of free levels using existing data for association constants between the hormone and its binding protein are likewise prone to error because of assumptions of linear binding models and invariant association constants, both of which are invalid. © 2020 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

19.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255698

RESUMO

Dental enamel is hardest tissue in the body and is produced by dental epithelial cells residing in the tooth. Their cell fates are tightly controlled by transcriptional programs that are facilitated by fate determining transcription factors and chromatin regulators. Understanding the transcriptional program controlling dental cell fate is critical for our efforts to build and repair teeth. In this review, we describe the current understanding of these regulators essential for regeneration of dental epithelial stem cells and progeny, which are identified through transgenic mouse models. We first describe the development and morphogenesis of mouse dental epithelium in which different subpopulations of epithelia such as ameloblasts contribute to enamel formation. Then, we describe the function of critical factors in stem cells or progeny to drive enamel lineages. We also show that gene mutations of these factors are associated with dental anomalies in craniofacial diseases in humans. We also describe the function of the master regulators to govern dental lineages, in which the genetic removal of each factor switches dental cell fate to that generating hair. The distinct and related mechanisms responsible for the lineage plasticity are discussed. This knowledge will lead us to develop a potential tool for bioengineering new teeth.


Assuntos
Diferenciação Celular/genética , Células Epiteliais/metabolismo , Odontogênese/genética , Transcrição Gênica , Ameloblastos/citologia , Ameloblastos/metabolismo , Animais , Células Epiteliais/citologia , Epitélio/crescimento & desenvolvimento , Epitélio/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Camundongos Transgênicos , Dente/crescimento & desenvolvimento
20.
Adv Exp Med Biol ; 1268: 285-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32918224

RESUMO

Cutaneous malignancies including melanomas and keratinocyte carcinomas (KC) are the most common types of cancer, occurring at a rate of over one million per year in the United States. KC, which include both basal cell carcinomas and squamous cell carcinomas, are substantially more common than melanomas and form the subject of this chapter. Ultraviolet radiation (UVR), both UVB and UVA, as occurs with sunlight exposure is generally regarded as causal for these malignancies, but UVB is also required for vitamin D synthesis in the skin. Keratinocytes are the major cell in the epidermis. These cells not only produce vitamin D but contain the enzymatic machinery to metabolize vitamin D to its active metabolite, 1,25(OH)2D, and express the receptor for this metabolite, the vitamin D receptor (VDR). This allows the cell to respond to the 1,25(OH)2D that it produces. Based on our own data and that reported in the literature, we conclude that vitamin D signaling in the skin suppresses UVR-induced epidermal tumor formation. In this chapter we focus on four mechanisms by which vitamin D signaling suppresses tumor formation. They are inhibition of proliferation/stimulation of differentiation with discussion of the roles of hedgehog, Wnt/ß-catenin, and hyaluronan/CD44 pathways in mediating vitamin D regulation of proliferation/differentiation, regulation of the balance between oncogenic and tumor suppressor long noncoding RNAs, immune regulation, and promotion of DNA damage repair (DDR).


Assuntos
Receptores de Calcitriol/metabolismo , Pele/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Humanos , Queratinócitos/metabolismo , Pele/citologia , Neoplasias Cutâneas/metabolismo , Raios Ultravioleta/efeitos adversos , Vitamina D/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...