Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 371(2): 299-308, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31537613

RESUMO

Target-engagement pharmacodynamic (PD) biomarkers are valuable tools in the prioritization of drug candidates, especially for novel, first-in-class mechanisms whose robustness to alter disease outcome is unknown. Methionine aminopeptidase 2 (MetAP2) is a cytosolic metalloenzyme that cleaves the N-terminal methionine from nascent proteins. Inhibition of MetAP2 leads to weight loss in obese rodents, dogs and humans. However, there is a need to develop efficacious compounds that specifically inhibit MetAP2 with an improved safety profile. The objective of this study was to identify a PD biomarker for selecting potent, efficacious compounds and for predicting clinical efficacy that would result from inhibition of MetAP2. Here we report the use of NMet14-3-3γ for this purpose. Treatment of primary human cells with MetAP2 inhibitors resulted in an approx. 10-fold increase in NMet14-3-3γ levels. Furthermore, treatment of diet-induced obese mice with these compounds reduced body weight (approx. 20%) and increased NMet14-3-3γ (approx. 15-fold) in adipose tissues. The effects on target engagement and body weight increased over time and were dependent on dose and administration frequency of compound. The relationship between compound concentration in plasma, NMet14-3-3γ in tissue, and reduction of body weight in obese mice was used to generate a pharmacokinetic-pharmacodynamic-efficacy model for predicting efficacy of MetAP2 inhibitors in mice. We also developed a model for predicting weight loss in humans using a target engagement PD assay that measures inhibitor-bound MetAP2 in blood. In summary, MetAP2 target engagement biomarkers can be used to select efficacious compounds and predict weight loss in humans. SIGNIFICANCE STATEMENT: The application of target engagement pharmacodynamic biomarkers during drug development provides a means to determine the dose required to fully engage the intended target and an approach to connect the drug target to physiological effects. This work exemplifies the process of using target engagement biomarkers during preclinical research to select new drug candidates and predict clinical efficacy. We determine concentration of MetAP2 antiobesity compounds needed to produce pharmacological activity in primary human cells and in target tissues from an appropriate animal model and establish key relationships between pharmacokinetics, pharmacodynamics, and efficacy, including the duration of effects after drug administration. The biomarkers described here can aid decision-making in early clinical trials of MetAP2 inhibitors for the treatment of obesity.


Assuntos
Clorobenzenos/farmacologia , Cinamatos/farmacologia , Cicloexanos/farmacologia , Compostos de Epóxi/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metionil Aminopeptidases/antagonistas & inibidores , Metionil Aminopeptidases/metabolismo , Sesquiterpenos/farmacologia , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Animais , Biomarcadores/metabolismo , Clorobenzenos/química , Cinamatos/química , Cicloexanos/química , Relação Dose-Resposta a Droga , Compostos de Epóxi/química , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Valor Preditivo dos Testes , Sesquiterpenos/química , Resultado do Tratamento
2.
J Biol Chem ; 294(24): 9567-9575, 2019 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31048375

RESUMO

Inhibitors of methionine aminopeptidase 2 (MetAP2) have been shown to reduce body weight in obese mice and humans. The target tissue and cellular mechanism of MetAP2 inhibitors, however, have not been extensively examined. Using compounds with diverse chemical scaffolds, we showed that MetAP2 inhibition decreases body weight and fat mass and increases lean mass in the obese mice but not in the lean mice. Obesity is associated with catecholamine resistance and blunted ß-adrenergic receptor signaling activities, which could dampen lipolysis and energy expenditure resulting in weight gain. In the current study, we examined effect of MetAP2 inhibition on brown adipose tissue and brown adipocytes. Norepinephrine increases energy expenditure in brown adipose tissue by providing fatty acid substrate through lipolysis and by increasing expression of uncoupled protein-1 (UCP1). Metabolomic analysis shows that in response to MetAP2 inhibitor treatment, fatty acid metabolites in brown adipose tissue increase transiently and subsequently decrease to basal or below basal levels, suggesting an effect on fatty acid metabolism in this tissue. Treatment of brown adipocytes with MetAP2 inhibitors enhances norepinephrine-induced lipolysis and energy expenditure, and prolongs the activity of norepinephrine to increase ucp1 gene expression and energy expenditure in norepinephrine-desensitized brown adipocytes. In summary, we showed that the anti-obesity activity of MetAP2 inhibitors can be mediated, at least in part, through direct action on brown adipocytes by enhancing ß-adrenergic-signaling-stimulated activities.


Assuntos
Adipócitos Marrons/fisiologia , Aminopeptidases/antagonistas & inibidores , Peso Corporal/efeitos dos fármacos , Clorobenzenos/farmacologia , Metabolismo Energético/efeitos dos fármacos , Metaloendopeptidases/antagonistas & inibidores , Obesidade/prevenção & controle , Adipócitos Marrons/citologia , Adipócitos Marrons/efeitos dos fármacos , Animais , Humanos , Lipólise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Ratos , Transdução de Sinais , Termogênese
3.
Mol Metab ; 20: 89-101, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30553772

RESUMO

OBJECTIVE: Atherosclerosis is a major cause of cardiovascular disease. Monocyte-endothelial cell interactions are partly mediated by expression of monocyte CX3CR1 and endothelial cell fractalkine (CX3CL1). Interrupting the interaction between this ligand-receptor pair should reduce monocyte binding to the endothelial wall and reduce atherosclerosis. We sought to reduce atherosclerosis by preventing monocyte-endothelial cell interactions through use of a long-acting CX3CR1 agonist. METHODS: In this study, the chemokine domain of CX3CL1 was fused to the mouse Fc region to generate a long-acting soluble form of CX3CL1 suitable for chronic studies. CX3CL1-Fc or saline was injected twice a week (30 mg/kg) for 4 months into Ldlr knockout (KO) mice on an atherogenic western diet. RESULTS: CX3CL1-Fc-treated Ldlr KO mice showed decreased en face aortic lesion surface area and reduced aortic root lesion size with decreased necrotic core area. Flow cytometry analyses of CX3CL1-Fc-treated aortic wall cell digests revealed a decrease in M1-like polarized macrophages and T cells. Moreover, CX3CL1-Fc administration reduced diet-induced atherosclerosis after switching from an atherogenic to a normal chow diet. In vitro monocyte adhesion studies revealed that CX3CL1-Fc treatment caused fewer monocytes to adhere to a human umbilical vein endothelial cell monolayer. Furthermore, a dorsal window chamber model demonstrated that CX3CL1-Fc treatment decreased in vivo leukocyte adhesion and rolling in live capillaries after short-term ischemia-reperfusion. CONCLUSION: These results indicate that CX3CL1-Fc can inhibit monocyte/endothelial cell adhesion as well as reduce atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Quimiocina CX3CL1/uso terapêutico , Placa Aterosclerótica/tratamento farmacológico , Animais , Aorta/patologia , Aterosclerose/genética , Aterosclerose/prevenção & controle , Células Cultivadas , Quimiocina CX3CL1/genética , Fragmentos Fc das Imunoglobulinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placa Aterosclerótica/prevenção & controle , Receptores de LDL/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/uso terapêutico
4.
J Clin Invest ; 128(4): 1458-1470, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29504946

RESUMO

We have previously reported that the fractalkine (FKN)/CX3CR1 system represents a novel regulatory mechanism for insulin secretion and ß cell function. Here, we demonstrate that chronic administration of a long-acting form of FKN, FKN-Fc, can exert durable effects to improve glucose tolerance with increased glucose-stimulated insulin secretion and decreased ß cell apoptosis in obese rodent models. Unexpectedly, chronic FKN-Fc administration also led to decreased α cell glucagon secretion. In islet cells, FKN inhibited ATP-sensitive potassium channel conductance by an ERK-dependent mechanism, which triggered ß cell action potential (AP) firing and decreased α cell AP amplitude. This results in increased glucose-stimulated insulin secretion and decreased glucagon secretion. Beyond its islet effects, FKN-Fc also exerted peripheral effects to enhance hepatic insulin sensitivity due to inhibition of glucagon action. In hepatocytes, FKN treatment reduced glucagon-stimulated cAMP production and CREB phosphorylation in a pertussis toxin-sensitive manner. Together, these results raise the possibility of use of FKN-based therapy to improve type 2 diabetes by increasing both insulin secretion and insulin sensitivity.


Assuntos
Glicemia/metabolismo , Quimiocina CX3CL1/farmacologia , Fragmentos Fc das Imunoglobulinas/farmacologia , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Animais , Glicemia/genética , Proteína de Ligação a CREB/genética , Proteína de Ligação a CREB/metabolismo , Quimiocina CX3CL1/genética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Fragmentos Fc das Imunoglobulinas/genética , Secreção de Insulina/genética , Células Secretoras de Insulina/patologia , Camundongos , Camundongos Transgênicos , Proteínas Recombinantes de Fusão/genética
5.
J Proteome Res ; 5(7): 1776-84, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16823986

RESUMO

A novel approach is presented for the simultaneous identification and relative quantification of secreted peptides, particularly those that have been historically difficult to analyze in a concerted manner. Peptides exceeding 60 residues with various degrees of post-translational modification were identified on a liquid chromatographic time scale. The approach demonstrates high efficiency pattern-based recognition analysis of complex neuroendocrine peptide sets and enables rapid identification of biomarkers from biological material.


Assuntos
Biomarcadores Tumorais/análise , Avaliação Pré-Clínica de Medicamentos/métodos , Hormônios/química , Insulinoma/química , Neoplasias Pancreáticas/química , Peptídeos/química , Sequência de Aminoácidos , Animais , Linhagem Celular Tumoral , Colforsina/farmacologia , Simulação por Computador , Meios de Cultivo Condicionados/química , Insulinoma/patologia , Dados de Sequência Molecular , Neoplasias Pancreáticas/patologia , Proteômica/métodos , Ratos
6.
Endocrinology ; 143(8): 2880-5, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12130551

RESUMO

The retinoid X receptor (RXR) agonist bexarotene can cause clinically significant hypothyroidism in cutaneous T cell lymphoma patients. The mechanism by which the RXR agonist produces this effect is unclear. We have studied the impact of a selective RXR agonist (rexinoid), LG100268, on rat thyroid axis hormones and show that the acute phase of hypothyroidism is associated with reduced pituitary TSH secretion. A single oral administration of LG100268 to naive Sprague Dawley rats causes a rapid and statistically significant decline in TSH levels (apparent in 0.5-1 h). Total T(4) and T(3) levels decline more gradually, reaching statistical significance 24 h after treatment. Increasing doses of LG100268 produce greater suppression of thyroid axis hormones. To investigate the mechanism(s) mediating this suppression, we determined pituitary TSHbeta mRNA, TSH protein levels, and TRH-stimulated TSH secretion. Two hours after treatment, neither TSHbeta mRNA nor TSH protein levels were altered by LG100268. However, LG100268 treatment reduced the area under the curve for TRH-stimulated TSH secretion by 54%. We have identified an unexpected mechanism by which rexinoids induce hypothyroidism by acutely reducing TSH secretion from the anterior pituitary. This mechanism is independent of the rexinoid's previously demonstrated inhibition of TSHbeta gene transcription.


Assuntos
Hipotireoidismo/induzido quimicamente , Ácidos Nicotínicos/farmacologia , Receptores do Ácido Retinoico/fisiologia , Tetra-Hidronaftalenos/farmacologia , Fatores de Transcrição/fisiologia , Animais , Masculino , RNA Mensageiro/análise , Ratos , Ratos Sprague-Dawley , Receptores do Ácido Retinoico/agonistas , Receptores X de Retinoides , Hormônios Tireóideos/sangue , Tireotropina/sangue , Tireotropina/genética , Fatores de Transcrição/agonistas
7.
Diabetes ; 51(4): 1083-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11916929

RESUMO

A novel nonthiazolidinedione dual peroxisome proliferator- activated receptor (PPAR)-alpha/gamma agonist, LY465608, was designed to address the major metabolic disturbances of type 2 diabetes. LY465608 altered PPAR-responsive genes in liver and fat of db/db mice and dose-dependently lowered plasma glucose in hyperglycemic male Zucker diabetic fatty (ZDF) rats, with an ED(50) for glucose normalization of 3.8 mg small middle dot kg(-1) small middle dot day(-1). Metabolic improvements were associated with enhanced insulin sensitivity, as demonstrated in female obese Zucker (fa/fa) rats using both oral glucose tolerance tests and hyperinsulinemic-euglycemic clamps. Further characterization of LY465608 revealed metabolic changes distinct from a selective PPAR-gamma agonist, which were presumably due to the concomitant PPAR-alpha agonism, lower respiratory quotient, and less fat accumulation, despite a similar impact on glycemia in male ZDF rats. In addition to these alterations in diabetic and insulin-resistant animals, LY465608 dose-dependently elevated HDL cholesterol and lowered plasma triglycerides in human apolipoprotein A-I transgenic mice, demonstrating that this compound significantly improves primary cardiovascular risk factors. Overall, these studies demonstrate that LY465608 beneficially impacts multiple facets of type 2 diabetes and associated cardiovascular risk, including those facets involved in the development of micro- and macrovascular complications, which are the major sources for morbidity and mortality in these patients.


Assuntos
Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Resistência à Insulina , Síndrome Metabólica/fisiologia , Compostos Orgânicos , Receptores Citoplasmáticos e Nucleares/agonistas , Tiazolidinedionas , Fatores de Transcrição/agonistas , Animais , Glicemia/efeitos dos fármacos , Proteínas de Ligação a DNA/agonistas , Diabetes Mellitus Tipo 2/sangue , Relação Dose-Resposta a Droga , Ingestão de Energia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Mutantes , Ratos , Ratos Zucker , Rosiglitazona , Tiazóis/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...