Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 10(6): e0250622, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36346230

RESUMO

Diets rich in fruits and vegetables have been shown to exert positive effects on the gut microbiome. However, little is known about the specific effect of individual fruits or vegetables on gut microbe profiles. This study aims to elucidate the effects of tomato consumption on the gut microbiome, as tomatoes account for 22% of vegetable consumption in Western diets, and their consumption has been associated with positive health outcomes. Using piglets as a physiologically relevant model of human metabolism, 20 animals were assigned to either a control or a tomato powder-supplemented diet (both macronutrient matched and isocaloric) for 14 days. The microbiome was sampled rectally at three time points: day 0 (baseline), day 7 (midpoint), and day 14 (end of study). DNA was sequenced using shotgun metagenomics, and reads were annotated using MG-RAST. There were no differences in body weight or feed intake between our two treatment groups. There was a microbial shift which included a higher ratio of Bacteroidota to Bacillota (formerly known as Bacteroidetes and Firmicutes, respectively) and higher alpha-diversity in tomato-fed animals, indicating a shift to a more desirable phenotype. Analyses at both the phylum and genus levels showed global microbiome profile changes (permutational multivariate analysis of variance [PERMANOVA], P ≤ 0.05) over time but not with tomato consumption. These data suggest that short-term tomato consumption can beneficially influence the gut microbial profile, warranting further investigation in humans. IMPORTANCE The composition of the microorganisms in the gut is a contributor to overall health, prompting the development of strategies to alter the microbiome composition. Studies have investigated the role of the diet on the microbiome, as it is a major modifiable risk factor contributing to health; however, little is known about the causal effects of consumption of specific foods on the gut microbiota. A more complete understanding of how individual foods impact the microbiome will enable more evidence-based dietary recommendations for long-term health. Tomatoes are of interest as the most consumed nonstarchy vegetable and a common source of nutrients and phytochemicals across the world. This study aimed to elucidate the effect of short-term tomato consumption on the microbiome, using piglets as a physiologically relevant model to humans. We found that tomato consumption can positively affect the gut microbial profile, which warrants further investigation in humans.


Assuntos
Microbioma Gastrointestinal , Solanum lycopersicum , Humanos , Animais , Suínos , Microbioma Gastrointestinal/genética , Fezes , Dieta , Bacteroidetes , Firmicutes , Verduras
2.
New Phytol ; 232(5): 1944-1958, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34472097

RESUMO

Apple (Malus × domestica) has commercial and nutritional value, but breeding constraints of tree crops limit varietal improvement. Marker-assisted selection minimises these drawbacks, but breeders lack applications for targeting fruit phytochemicals. To understand genotype-phytochemical associations in apples, we have developed a high-throughput integration strategy for genomic and multiplatform metabolomics data. Here, 124 apple genotypes, including members of three pedigree-connected breeding families alongside diverse cultivars and wild selections, were genotyped and phenotyped. Metabolite genome-wide association studies (mGWAS) were conducted with c. 10 000 single nucleotide polymorphisms and phenotypic data acquired via LC-MS and 1 H NMR untargeted metabolomics. Putative metabolite quantitative trait loci (mQTL) were then validated via pedigree-based analyses (PBA). Using our developed method, 519, 726 and 177 putative mQTL were detected in LC-MS positive and negative ionisation modes, and NMR, respectively. mQTL were indicated on each chromosome, with hotspots on linkage groups 16 and 17. A chlorogenic acid mQTL was discovered on chromosome 17 via mGWAS and validated with a two-step PBA, enabling discovery of novel candidate gene-metabolite relationships. Complementary data from three metabolomics approaches and dual genomics analyses increased confidence in validity of compound annotation and mQTL detection. Our platform demonstrates the utility of multiomic integration to advance data-driven, phytochemical-based plant breeding.


Assuntos
Malus , Estudo de Associação Genômica Ampla , Genômica , Malus/genética , Metabolômica , Melhoramento Vegetal , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...