Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Opt Express ; 7(1): 225-37, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26819831

RESUMO

Burn diagnosis using laser speckle light typically employs widefield illumination of the burn region to produce two-dimensional speckle patterns from light backscattered from the entire irradiated tissue volume. Analysis of speckle contrast in these time-integrated patterns can then provide information on burn severity. Here, by contrast, we use point illumination to generate diffuse reflectance laser speckle patterns of the burn. By examining spatiotemporal fluctuations in these time-integrated patterns along the radial direction from the incident point beam, we show the ability to distinguish partial-thickness burns in a porcine model in vivo within the first 24 hours post-burn. Furthermore, our findings suggest that time-integrated diffuse reflectance laser speckle can be useful for monitoring burn healing over time post-burn. Unlike conventional diffuse reflectance laser speckle detection systems that utilize scientific or industrial-grade cameras, our system is designed with a camera-phone, demonstrating the potential for burn diagnosis with a simple imager.

2.
Opt Express ; 22(16): 19641-52, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25321047

RESUMO

Tracking of single fluorescent probes along the axial (depth) dimension is an important task in the biological and physical sciences. In this paper, we propose and analyze the use of fluorescence phase-shifting interferometry (FPSI) for axial single particle tracking (SPT) along 1 µm-depth (z) trajectories. FPSI is a photon-efficient, self-interference method that collects and coherently combines the 4π steradian emission wavefronts of a single fluorescent particle while introducing multiple phase shifts between the wavefronts to axially localize the particle with high precision over an extended depth-of-field. We employ vectorial imaging analysis and Monte-Carlo simulations of diffusive and directed motions to present a detailed comparative study of spatial and temporal FPSI for axial SPT based on simultaneous and time sequential collection of four phase-shifted interferograms using a single camera, respectively. The results of the numerical simulations show that for ≤0.105 µm2/s diffusion, spatial FPSI attains a maximal twofold improvement in the trajectory reconstruction precision at the expense of a fourfold reduced field-of-view compared to temporal FPSI. Furthermore, the analysis predicts that for sufficiently slow random linear motions, temporal FPSI is superior to spatial FPSI and achieves a smaller trajectory reconstruction error.

3.
Opt Lett ; 32(11): 1560-2, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17546188

RESUMO

Noninvasive measurements of the scattering coefficients of optically turbid media using angle-resolved optical frequency-domain imaging (OFDI) are demonstrated. It is shown that, by incoherently averaging OFDI reflectance signals acquired at different backscattering angles, speckle noise is reduced, allowing scattering coefficients to be extracted from a single A-line with much higher accuracy than with measurements from conventional OFDI and optical coherence tomography systems. Modeling speckle as a random phasor sum, the relationship between the measurement accuracy and the number of compounded angles is derived. The sensitivity analysis is validated with measurements from a tissue phantom.


Assuntos
Óptica e Fotônica , Tomografia de Coerência Óptica/métodos , Calibragem , Modelos Lineares , Modelos Estatísticos , Imagens de Fantasmas , Probabilidade , Refratometria , Análise de Regressão , Reprodutibilidade dos Testes , Espalhamento de Radiação
4.
Opt Express ; 15(6): 2810-21, 2007 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19532519

RESUMO

Recently, we have experimentally demonstrated a new form of cross-sectional, coherence-gated fluorescence imaging referred to as SD-FCT ('spectral-domain fluorescence coherence tomography'). Imaging in SD-FCT is accomplished by spectrally detecting self-interference of the spontaneous emission of fluorophores, thereby providing depth-resolved information on the axial positions of fluorescent probes. Here, we present a theoretical investigation of the factors affecting the detected SD-FCT signal through scattering media. An imaging equation for SD-FCT is derived that includes the effects of defocusing, numerical-aperture, and the optical properties of the medium. A comparison between the optical sectioning capabilities of SD-FCT and confocal microscopy is also presented. Our results suggest that coherence gating in fluorescence imaging may provide an improved approach for depth-resolved imaging of fluorescently labeled samples; high axial resolution (a few microns) can be achieved with low numerical apertures (NA<0.09) while maintaining a large depth of field (a few hundreds of microns) in a relatively low scattering medium (6 mean free paths), whereas moderate NA's can be used to enhance depth selectivity in more highly scattering biological samples.

5.
Opt Lett ; 31(6): 760-2, 2006 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-16544615

RESUMO

Recent results have demonstrated unprecedented wavelength-tuning speed and repetition rate performance of semiconductor ring lasers incorporating scanning filters. However, several unique operational characteristics of these lasers have not been adequately explained, and the lack of an accurate model has hindered optimization. We numerically investigated the characteristics of these sources, using a semiconductor optical amplifier (SOA) traveling-wave Langevin model, and found good agreement with experimental measurements. In particular, we explored the role of the SOA refractive-index nonlinearities in determining the intracavity frequency-shift-broadening and the emitted power dependence on scan speed and direction. Our model predicts both continuous-wave and pulse operation and shows a universal relationship between the output power of lasers that have different cavity lengths and the filter peak frequency shift per round trip, therefore revealing the advantage of short cavities for high-speed biomedical imaging.


Assuntos
Amplificadores Eletrônicos , Engenharia Biomédica/instrumentação , Engenharia Biomédica/métodos , Desenho Assistido por Computador , Lasers , Refratometria/instrumentação , Refratometria/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Modelos Teóricos , Dinâmica não Linear , Óptica e Fotônica , Reprodutibilidade dos Testes , Semicondutores , Sensibilidade e Especificidade
6.
Opt Express ; 14(16): 7134-43, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19529084

RESUMO

In this paper, we introduce a new form of cross-sectional, coherence-gated fluorescence imaging, which we term 'spectral-domain fluorescence coherence tomography' (SD-FCT). SD-FCT is accomplished by spectrally detecting self-interference of the spontaneous emission of fluorophores located along the axial (depth) dimension of the sample. We have built a first generation SD-FCT system that utilizes two opposing low numerical-aperture objective lenses in an interferometer and an imaging spectrometer for detecting self-interference of fluorescence emitted from a sample. Here, in proof-of-principle experiments we demonstrate cross-sectional profiling of layered fluorescence phantoms. Narrow (a few micrometers FWHM) axial point-spread functions, large ranging depths (a few hundreds of micrometers) and wide fields of view (>1 mm) were measured. Initial results suggest that SD-FCT may be a viable tool for the investigation of semi-transparent and selectively labeled fluorescent samples.


Assuntos
Fluorescência , Interferometria/métodos , Espectrometria de Fluorescência/instrumentação , Desenho de Equipamento , Análise de Fourier , Processamento de Imagem Assistida por Computador
7.
Opt Express ; 13(24): 9822-33, 2005 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-19503191

RESUMO

Monte-Carlo simulation is an important tool in the field of biomedical optics, but suffers from significant computational expense. In this paper, we present the multicanonical Monte-Carlo (MMC) method for improving the efficiency of classical Monte Carlo simulations of light propagation in biological media. The MMC is an adaptive importance sampling technique that iteratively equilibrates at the optimal importance distribution with little (if any) a priori knowledge of how to choose and bias the importance proposal distribution. We illustrate the efficiency of this method by evaluating the probability density function (pdf) for the radial distance of photons exiting from a semi-infinite homogeneous tissue as well as the pdf for the maximum penetration depth of photons propagating in an inhomogeneous tissue. The results agree very well with diffusion theory as well as classical Monte-Carlo simulations. A six to sevenfold improvement in computational time is achieved by the MMC algorithm in calculating pdf values as low as 10(-8). This result suggests that the MMC method can be useful in efficiently studying numerous applications of light propagation in complex biological media where the remitted photon yield is low.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...