Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 13(7)2022 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-35888825

RESUMO

Imbalances in levels of glutamate (GLU) and gamma-aminobutyric acid (GABA) and their sub-second signaling dynamics occur in several brain disorders including traumatic brain injury, epilepsy, and Alzheimer's disease. The present work reports on the optimization and in vivo testing of a silicon (Si) multifunctional biosensor probe for sub-second simultaneous real-time detection of GLU and GABA. The Si probe features four surface-functionalized platinum ultramicroelectrodes (UMEs) for detection of GLU and GABA, a sentinel site, and integrated microfluidics for in-situ calibration. Optimal enzyme concentrations, size-exclusion phenylenediamine layer and micro spotting conditions were systematically investigated. The measured GLU sensitivity for the GLU and GABA sites were as high as 219 ± 8 nA µM-1 cm-2 (n = 3). The measured GABA sensitivity was as high as 10 ± 1 nA µM-1 cm-2 (n = 3). Baseline recordings (n = 18) in live rats demonstrated a useful probe life of at least 11 days with GLU and GABA concentrations changing at the levels of 100's and 1000's of µM and with expected periodic bursts or fluctuations during walking, teeth grinding and other activities and with a clear difference in the peak amplitude of the sensor fluctuations between rest (low) and activity (higher), or when the rat was surprised (a reaction with no movement). Importantly, the probe could improve methods for large-scale monitoring of neurochemical activity and network function in disease and injury, in live rodent brain.

2.
Sens Actuators B Chem ; 3372021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35603327

RESUMO

Glutamate (GLU) and gamma-aminobutyric acid (GABA) are neurotransmitters (NTs) with an essential role in signal transmission in the brain. Brain disorders, such as epilepsy, Alzheimer's and Parkinson's diseases, and traumatic brain injury can be linked to imbalances in the GLU-GABA homeostasis that occurs in sub-second to seconds time frames. Current measurement techniques can detect these two NT concentrations simultaneously only in vitro. The present work reports on the fabrication of a silicon multifunctional biosensor microarray probe for sub-second simultaneous GLU-GABA detection in real-time, with excellent analyte sensitivity and selectivity and in vivo capabilities. The novel Si probes feature four surface-functionalized platinum ultramicroelectrodes (UMEs) for simultaneous amperometric detection of GLU and GABA with a sentinel, and a built-in microfluidic channel for the introduction of neurochemicals in the proximity of the UMEs. The microchannel also allows functioning of an On-Demand In-situ Calibrator that runs in-situ biosensor calibration. The probe exhibited excellent robustness at insertion in agarose-gel brain-tissue-mimicking test, and remarkably high hydrogen peroxide sensitivity (a by-product of GLU-GABA enzyme biosensor) with values on the order of 5000 nA µM -1 cm -2 and maximum sensitivities of 204±15 nA µM -1 cm -2 and 37±7 nA µM -1 cm -2 for GLU and GABA, respectively. Furthermore, the limit of detection of the biosensors reached as low as 7 nM, 165 nM and 750 nM for H 2 O 2, GLU and GABA, respectively and a temporal resolution of hundreds of milliseconds during in vivo studies using freely moving rats.

3.
J Synchrotron Radiat ; 27(Pt 1): 90-99, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31868741

RESUMO

It is crucial to develop an environmentally friendly and low-cost method to treat industrial effluent that contains soluble dyes and microbes. Most of the photocatalysts have been studied using an external light source that increases the cost of the purification process of effluent. This study focuses on developing efficient solar photocatalytic nanofoams. The controlled growth of ZnO nanofoams (CNZ nanofoams) in a simple method of thermal oxidation using a soft template is reported. Prepared nanofoams are characterized using X-ray diffraction, scanning electon microscopy and synchrotron soft X-ray absorption spectroscopy. By photocatalysis studies under direct sunlight it was found that within 120 min CNZ nanofoams degraded 99% of the dye. In addition, antimicrobial studies of multi-drug-resistant E. Fergusonii isolated from wastewater was carried out. These antimicrobial results showed a good inhibition zone, indicating that prepared nanofoams are both an effective solar photocatalyst and an antimicrobial agent.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA