Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 4709, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949214

RESUMO

The incorporation of nanometric-sized objects in conventional coatings can improve the properties of the matrix alone or give rise to new functionalities brought by the nanostructures. Current processes call on various shaping technologies that depend on the nature of the nano-inclusions and the matrix considered. Here, we present an integrated process based on the incorporation of nanoparticles using the aerosol route. It combines divergent nanoparticle jets with a uniform spatial profile and Physical Vapor Deposition (PVD). The chemical nature of the nanoparticles is then independent of that used for the matrix. First samples show that the morphology of nanocomposites is strongly dependent on the particle density in the films. Moreover, using several aerodynamic lens arrays combined with smart masking demonstrate the ability for coating on large surface area (40 cm2) substrates. These extended possibilities for developing new types of nanocomposites on any type of substrate and on large surface areas at low temperatures proves to be of strategic interest for various applications.

2.
ACS Appl Mater Interfaces ; 13(30): 35719-35728, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34288641

RESUMO

Exsolution is a promising technique to design metal nanoparticles for electrocatalysis and renewable energy. In this work, Ni-doped perovskites, (Pr0.5Ba0.5)1-x/2Mn1-x/2Nix/2O3-δ with x = 0, 0.05, 0.1, and 0.2 (S-PBMNx), were prepared to design exsolution systems as solid oxide fuel cell anodes and for catalysis applications. X-ray diffraction and transmission electron microscopy (TEM) analyses demonstrated that correlating A-site deficiency with Ni content can effectively induce exsolution of all Ni under H2 atmosphere at T ∼ 875 °C, yielding the reduced (exsolved) R-PBMNx materials. On heating the exsolution systems in air, metal incorporation in the oxide lattice did not occur; instead, the Ni nanoparticles oxidized to NiO on the layered perovskite surface. The lowest area-specific resistance (ASR) under wet 5% H2/N2 in symmetrical cells was observed for R-PBMN0.2 anode (ASR ∼ 0.64 Ω cm2 at 850 °C) due to the highest Ni particle density in the R-PBMNx series. The best performance for dry reforming of methane (DRM) was also obtained for R-PBMN0.2, with CH4 and CO2 conversion rates at 11 and 32%, respectively, and the highest production of H2 (37%). The DRM activity of R-PBMN0.2 starts at 800 °C and is sustained for up to at least 5 h operation with little carbon deposition (0.017 g·gcat-1·h-1). These results clearly demonstrate that varying Ni-doping in layered double perovskite oxides is an effective strategy to manipulate the electrochemical performance and catalytic activity for energy conversion purposes.

3.
Nanomaterials (Basel) ; 11(5)2021 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-34063587

RESUMO

Gadolinia doped ceria coatings were elaborated by cathodic arc evaporation from a metallic Ce-Gd (90-10 at.%) target inserted into a conventional multiarc Ti evaporation target in the presence of a reactive argon-oxygen gas mixture. The structural and chemical features of these films were determined by x-ray diffraction and scanning electron microscopy. Their electrical properties were characterized using impedance spectroscopy measurements. It was shown that the as-deposited coatings crystallize in the fluorite type fcc structure of ceria and that their composition is the same as that of the target. The morphology of the coatings is influenced by the evaporation parameter (stress and droplet). The electrical measurements showed two contributions in Nyquist representation and the activation energy was slightly higher than that given in the literature data for the bulk material.

4.
Nanotechnology ; 29(35): 355706, 2018 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-29889053

RESUMO

Inclined, zigzag and spiral TiAg films were prepared by glancing angle co-deposition, using two distinct Ti and Ag targets with a particle incident angle of 80° and Ag contents ranging from 20 to 75 at%. The effect of increasing Ag incorporation and columnar architecture change on the morphological, structural and electrical properties of the films was investigated. It is shown that inclined columnar features (ß = 47°) with high porosity were obtained for 20 at% Ag, with the column angle sharply decreasing (ß = 21°) for 50 at% Ag, and steeply increasing afterwards until ß = 37° for the film with 75 at% Ag. The sputtered films exhibit a rather well-crystallized structure for Ag contents ≥50 at%, with a TiAg (111) preferential growth. No significant oxidation was detected in all films, except for the one with 20 at% Ag, after two 298-473-298 K temperature cycles in air. The calculated temperature coefficient of resistivity (TCR) values vary between 1.4 and 5.5 × 10-4 K-1. Nano-sculptured spiral films exhibit consistently higher resistivity (ρ = 1.5 × 10-6 Ω m) and TCR values (2.9 × 10-4 K-1) than the inclined one with the same Ag content (ρ = 1.2 × 10-6 Ω m and TCR = 2.0 × 10-4 K-1). No significant changes are observed in the zigzag films concerning these properties. The effective anisotropy A eff at 473 K changes from 1.3 to 1.7 for the inclined films. Spiral films exhibit an almost completely isotropic behavior with A eff = 1.1. Ag-rich TiAg core + shell Janus-like columns were obtained with increasing Ag concentrations.

5.
Rev Sci Instrum ; 88(2): 025105, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249524

RESUMO

The present study describes a sputtering and in situ vacuum electrical resistivity setup that allows a more efficient sputtering-oxidation coupling process for the fabrication of oxide compounds like vanadium dioxide, VO2. After the sputtering deposition of pure V thin films, the proposed setup enables the sample holder to be transferred from the sputtering to the in situ annealing + resistivity chamber without venting the whole system. The thermal oxidation of the V films was studied by implementing two different temperature cycles up to 550 °C, both in air (using a different resistivity setup) and vacuum conditions. Main results show that the proposed system is able to accurately follow the different temperature setpoints, presenting clean and low-noise resistivity curves. Furthermore, it is possible to identify the formation of different vanadium oxide phases in air, taking into account the distinct temperature cycles used. The metallic-like electrical properties of the annealed coatings are maintained in vacuum whereas those heated in air produce a vanadium oxide phase mixture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...