Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Fish Physiol Biochem ; 50(2): 527-541, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38099984

RESUMO

The widespread use of pesticides in some areas where fish species such as tilapia are farmed may cause damage to the environment and affect commercial fish and therefore, human health. Water leaching with the pesticide trichlorfon, during the fumigation season in the field, can affect water quality in fish farms and consequently affect fish health. At the same time, the use of immunomodulatory compounds such as ß-glucan supplied in the diet has become widespread in fish farms as it has been shown that improves the overall immune response. The present research examines the immunomodulatory impacts observed in macrophages of Nile tilapia (Oreochromis niloticus) after being fed a diet supplemented with ß-glucan for 15 days, followed by their in vitro exposure to trichlorfon, an organophosphate pesticide, at concentrations of 100 and 500 µg mL-1 for 24 h. The results showed that ß-glucan diet improved the viability of cells exposed to trichlorfon and their antioxidant capacity. However, ß-glucan did not counteract the effects of the pesticide as for the ability to protect against bacterial infection. From the present results, it can be concluded that ß-glucan feeding exerted a protective role against oxidative damage in cells, but it was not enough to reduce the deleterious effects of trichlorfon on the microbicidal capacity of macrophages exposed to this pesticide.


Assuntos
Ciclídeos , Doenças dos Peixes , Inseticidas , Tilápia , beta-Glucanas , Humanos , Animais , Triclorfon , beta-Glucanas/farmacologia , Dieta/veterinária , Imunidade Inata , Suplementos Nutricionais/análise , Ciclídeos/fisiologia , Macrófagos , Ração Animal/análise , Doenças dos Peixes/microbiologia
2.
Fish Shellfish Immunol ; 142: 109089, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37722438

RESUMO

There is evidence that the administration of ß-glucan can effectively activate several defense mechanisms, such as the Tlr-Myd88-Nfkb1 pathway that induces the expression of immune cytokines. Thus, the objective of this work was to evaluate whether ß-glucan acts on the mechanisms of gene transcription via the Tlr-Myd88-Nfkb1 pathway in Nile tilapia under stress after challenge with Streptococcus agalactiae. Therefore, we evaluated the expression of immune system genes such as toll-like receptors 1 (tlr1), toll-like receptors 2 (tlr2), primary myeloid differentiation response gene (myd88) and nuclear factor kappa B1 (nfkb1). A total of 408 fish were distributed in 24 polyethylene boxes and randomly divided into eight groups with 3 replications each: C15: Tilapias received a control diet (free of ß-glucan) for 15 days and were sampled after the 15th day of the experiment; C15D: Tilapias received a control diet (free of ß-glucan) for 15 days, were challenged on the 14th day and were sampled at the 15th day of the experiment; ß15: Tilapias received experimental diet (1g kg-1 of ß-glucan) for 15 days and were sampled after 15 days; ß15D: Tilapias received an experimental diet (1g kg-1 of ß-glucan) for 15 days, were challenged on the 14th day and were sampled at the 15th day of the experiment; C30: Tilapias received a control diet (free of ß-glucan) for 30 days and were sampled on the 30th day of the experiment; C30D: Tilapias received a control diet (free of ß-glucan) for 30 days, were challenged on the 29th day and were sampled at the 30th day of the experiment; ß30: Tilapias received experimental diet (1g kg-1 of ß-glucan) for 30 days and were sampled after 30 days and ß30D: Tilapias received experimental diet (1g kg-1 of ß-glucan) for 30 days, were challenged on the 29th day and were sampled at 30 of the experiment. In the fish sampled at 15 and 30 days of the experiment, after being anesthetized and killed by brain section, cranial kidney and spleen were collected for gene expression analysis. The analyzes showed that the association of ß-glucan and stressful management modulated the immune system, using the Tlr-Myd88-Nfkb1 signaling pathway, indicating that this compound can be used to promote early defense and protect fish against diseases.


Assuntos
Ciclídeos , Doenças dos Peixes , beta-Glucanas , Animais , beta-Glucanas/farmacologia , beta-Glucanas/metabolismo , Suplementos Nutricionais , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Dieta/veterinária , Transdução de Sinais , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Ração Animal/análise
3.
Fish Shellfish Immunol ; 117: 179-187, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34391940

RESUMO

The association of vaccines with immunostimulants such as ß-glucan, promote the production of cytokines, competent immune cells and antibodies. However, differences between ß-glucan types and trials make it difficult to understand ß-glucan's mechanism of action. In this study, three trials were carried out with control and fish fed ß-glucan, the first trial occurred at 15 days; the second trial occurred at 30 days when we associated ß-glucan and vaccine; and the third trial occurred at 15 days post-challenge with Streptococcus agalactiae in tilapia (O. niloticus) in order to investigate immune-related gene expression in the head kidney and spleen using real-time qPCR. We found increases in HSP70, IL-6, IL-1ß, TNF-α, IL-10, Lys and C3 predominantly in the head kidney, except for IgM expression, which prevailed in the spleen, under vaccinated + ß-glucan action. This demonstrates the trade-off presented by the head kidney and spleen after immunostimulation in order to produce acquired immunity, as well as an increase in HSP70 expression in vaccinated + ß-glucan fish. The results suggest that ß-glucan stimulates the immune response through damage-associated molecular patterns (DAMPs) recognition. Therefore, these dynamics of the immune response promote a more robust defense against disease.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Ciclídeos/imunologia , Rim Cefálico/efeitos dos fármacos , Baço/efeitos dos fármacos , Vacinas Estreptocócicas/administração & dosagem , beta-Glucanas/administração & dosagem , Imunidade Adaptativa , Animais , Ciclídeos/genética , Ciclídeos/microbiologia , Citocinas/genética , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Doenças dos Peixes/prevenção & controle , Proteínas de Peixes/genética , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Rim Cefálico/imunologia , Muramidase/imunologia , Transdução de Sinais , Baço/imunologia , Infecções Estreptocócicas/genética , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus agalactiae
4.
Artigo em Inglês | MEDLINE | ID: mdl-34237465

RESUMO

We investigated the impact of both the oral administration of hydrocortisone (HC) and an acute stressor on stress, innate immune responses and antioxidant system/oxidative stress responses of juvenile Piaractus mesopotamicus. Fish were either 1) given a commercial feed (C), 2) given a feed supplemented with 400 mg/kg HC, or 3) fed a commercial feed, chased for 2 min and exposed to air for 4 min (S). After initial sampling, fish C and HC were fed and sampled 1, 3, 6, 24 and 72 h post-feeding. Fish S were fed at the same time as the other groups, exposed to a stressor, and sampled 1, 3, 6, 24 and 72 h after. Exposure to the stressor increased circulating glucose and cortisol levels (at 1 and 3 h, respectively), while oral HC increased circulating cortisol at 1 h and glucose at 3 h. The stressor activated respiratory activity of leukocytes (RAL) at 3 h and reduced it at 6 h. HC did not activate RAL, but it did impair it at 6 h. The serum hemolytic activity of the complement system (HAC50) was impaired by the stressor at 1 and 3 h and by HC at 1 h. Regarding the antioxidant system, exposure to the stressor reduced glutathione peroxidase (GPx) and catalase (CAT) activity and decreased concentrations of reduced glutathione (GSH) in the liver up to 6 h. HC only impaired GPx. Additionally, stress induced the accumulation of melano-macrophage (MM) and melano-macrophage centers (MMC), which are biomarkers of oxidative stress, in the spleen. Differences in biomarkers in fish given cortisol and exposed to stress indicate that exogenous hormone was unable to precisely reproduce stress responses.


Assuntos
Corticosteroides/farmacologia , Antioxidantes/metabolismo , Characidae/imunologia , Characidae/fisiologia , Fígado/metabolismo , Ração Animal/análise , Animais , Biomarcadores/metabolismo , Proteínas do Sistema Complemento/metabolismo , Peixes , Glutationa Peroxidase/metabolismo , Hidrocortisona/sangue , Hidrocortisona/metabolismo , Sistema Imunitário , Imunidade Inata , Leucócitos/metabolismo , Macrófagos/metabolismo , Estresse Oxidativo , Baço/metabolismo , Estresse Fisiológico
5.
Fish Physiol Biochem ; 46(4): 1309-1321, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32236770

RESUMO

Fish metabolic allostatic dynamics, when animal present physiological modifications that can be strategies to survive, are important for promoting changes to ensure whole body self-protection and survival in chronic states of stress. To determine the impact of sequential stressors on pacu (Piaractus mesopotamicus), fish were subjected to two trials of stressful treatments, administration of exogenous dietary cortisol, and parasite challenge. The first experiment consisted of a two-day acute stress trial and the second, an eight-day chronic stress trial, and after both experiments, fish parasite susceptibility was assessed with the ectoparasite Dolops carvalhoi challenge. Physiological changes in response to acute trial were observed in glycogen, cortisol, glucose, osmolarity, sodium, calcium, chloride, potassium, hematocrit, hemoglobin, red blood cells and mean corpuscular volume, and white blood cell (P < 0.05), whereas response to chronic trial were observed in glycogen, osmolarity, potassium, calcium, chloride, mean corpuscular volume, white blood cell, neutrophil, and lymphocyte (P < 0.05). Acute trials caused physiological changes, however those changes did not induce the consumption of hepatic glycogen. Chronic stress caused physiological changes that induced hepatic glycogen consumption. Under acute trial, stress experience was important to fish to achieve homeostasis after chronic stress. Changes were important to modulate the response to stressor, improve body health status, and overcome the extra stressor with D. carvalhoi challenge. The experiments demonstrate that pacu initiate strategic self-protective metabolic dynamics in acute states of stress that ensure the maintenance of important life processes in front of sequential stressors.


Assuntos
Arguloida/patogenicidade , Caraciformes/metabolismo , Caraciformes/parasitologia , Ectoparasitoses/veterinária , Doenças dos Peixes/parasitologia , Estresse Fisiológico/fisiologia , Alostase/fisiologia , Animais , Caraciformes/sangue , Dieta/veterinária , Ectoparasitoses/sangue , Ectoparasitoses/metabolismo , Ectoparasitoses/prevenção & controle , Doenças dos Peixes/sangue , Doenças dos Peixes/metabolismo , Doenças dos Peixes/prevenção & controle , Pesqueiros , Glicogênio/sangue , Hematócrito/veterinária , Hemoglobinas/metabolismo , Hidrocortisona/administração & dosagem , Contagem de Linfócitos , Neutrófilos/citologia , Concentração Osmolar , Potássio/sangue , Distribuição Aleatória , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...