Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Infect Dis ; 75(Suppl 2): S243-S250, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35675696

RESUMO

BACKGROUND: During August 2021-September 2021, a Connecticut college experienced a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant outbreak despite high (99%) vaccination coverage, indoor masking policies, and twice-weekly testing. The Connecticut Department of Public Health investigated characteristics associated with infection and phylogenetic relationships among cases. METHODS: A case was a SARS-CoV-2 infection diagnosed by a viral test during August 2021-September 2021 in a student. College staff provided enrollment and case information. An anonymous online student survey collected demographics, SARS-CoV-2 case and vaccination history, and activities preceding the outbreak. Multivariate logistic regression identified characteristics associated with infection. Phylogenetic analyses compared 115 student viral genome sequences with contemporaneous community genomes. RESULTS: Overall, 199 of 1788 students (11%) had laboratory-confirmed SARS-CoV-2 infection; most were fully vaccinated (194 of 199, 97%). Attack rates were highest among sophomores (72 of 414, 17%) and unvaccinated students (5 of 18, 28%). Attending in-person classes with an infectious student was not associated with infection (adjusted odds ratio [aOR], 1.0; 95% confidence interval [CI], .5-2.2). Compared with uninfected students, infected students were more likely to be sophomores (aOR, 3.3; 95% CI, 1.1-10.7), attend social gatherings before the outbreak (aOR, 2.8; 95% CI, 1.3-6.4), and complete a vaccine series ≥180 days prior (aOR, 5.5; 95% CI, 1.8-16.2). Phylogenetic analyses suggested a common viral source for most cases. CONCLUSIONS: SARS-CoV-2 infection in this highly vaccinated college population was associated with unmasked off-campus social gatherings, not in-person classes. Students should stay up to date on vaccination to reduce infection.


Assuntos
COVID-19 , Vacinas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Connecticut/epidemiologia , Surtos de Doenças , Humanos , Filogenia , SARS-CoV-2/genética , Cobertura Vacinal
2.
Med ; 3(5): 325-334.e4, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35399324

RESUMO

Background: The SARS-CoV-2 Omicron variant became a global concern due to its rapid spread and displacement of the dominant Delta variant. We hypothesized that part of Omicron's rapid rise was based on its increased ability to cause infections in persons that are vaccinated compared to Delta. Methods: We analyzed nasal swab PCR tests for samples collected between December 12 and 16, 2021, in Connecticut when the proportion of Delta and Omicron variants was relatively equal. We used the spike gene target failure (SGTF) to classify probable Delta and Omicron infections. We fitted an exponential curve to the estimated infections to determine the doubling times for each variant. We compared the test positivity rates for each variant by vaccination status, number of doses, and vaccine manufacturer. Generalized linear models were used to assess factors associated with odds of infection with each variant among persons testing positive for SARS-CoV-2. Findings: For infections with high virus copies (Ct < 30) among vaccinated persons, we found higher odds that they were infected with Omicron compared to Delta, and that the odds increased with increased number of vaccine doses. Compared to unvaccinated persons, we found significant reduction in Delta positivity rates after two (43.4%-49.1%) and three vaccine doses (81.1%), while we only found a significant reduction in Omicron positivity rates after three doses (62.3%). Conclusion: The rapid rise in Omicron infections was likely driven by Omicron's escape from vaccine-induced immunity. Funding: This work was supported by the Centers for Disease Control and Prevention (CDC).


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Vacinas contra COVID-19 , Hospitalização , Humanos , SARS-CoV-2/genética
3.
Cell Rep Med ; 3(4): 100583, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35480627

RESUMO

The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant's respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta's enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/epidemiologia , Humanos , New England/epidemiologia , Saúde Pública , SARS-CoV-2/genética
4.
Nat Med ; 28(3): 481-485, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35051990

RESUMO

The recent emergence of the SARS-CoV-2 Omicron variant is raising concerns because of its increased transmissibility and its numerous spike mutations, which have the potential to evade neutralizing antibodies elicited by COVID-19 vaccines. Here we evaluated the effects of a heterologous BNT162b2 mRNA vaccine booster on the humoral immunity of participants who had received a two-dose regimen of CoronaVac, an inactivated vaccine used globally. We found that a heterologous CoronaVac prime vaccination of two doses followed by a BNT162b2 booster induces elevated virus-specific antibody levels and potent neutralization activity against the ancestral virus and the Delta variant, resembling the titers obtained after two doses of mRNA vaccines. Although neutralization of Omicron was undetectable in participants who had received a two-dose regimen of CoronaVac, the BNT162b2 booster resulted in a 1.4-fold increase in neutralization activity against Omicron compared with the two-dose mRNA vaccine. Despite this increase, neutralizing antibody titers were reduced by 7.1-fold and 3.6-fold for Omicron compared with the ancestral strain and the Delta variant, respectively. These findings have immediate implications for multiple countries that previously used a CoronaVac regimen and reinforce the idea that the Omicron variant is associated with immune escape from vaccines or infection-induced immunity, highlighting the global need for vaccine boosters to combat the impact of emerging variants.


Assuntos
Vacina BNT162 , COVID-19 , Anticorpos Neutralizantes , Anticorpos Antivirais , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , SARS-CoV-2/genética , Vacinação , Vacinas Sintéticas , Vacinas de mRNA
5.
medRxiv ; 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34642698

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta's infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∼6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta's enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...