Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
J Invest Dermatol ; 141(9): 2291-2299.e2, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33773987

RESUMO

Tuberous sclerosis complex (TSC) is an autosomal-dominant disorder characterized by hamartomatous tumors of the skin, kidneys, brain, and lungs. TSC is caused by mutations in the TSC1 and TSC2 genes, which result in hyperactivation of the mTOR, leading to dysregulated cell growth and autophagy. Rapamycin (sirolimus) shrinks TSC tumors, but the clinical benefits of sirolimus are not sustained after its withdrawal. In this study, we studied the cellular processes critical for tumor formation and growth, including cell proliferation and cell size. TSC2-/- and TSC2+/- cells were isolated from TSC skin tumors and normal-appearing skin, respectively. Cells were incubated with sirolimus for 72 hours. Withdrawal of sirolimus from TSC2-/- cells resulted in a highly proliferative phenotype and caused cells to enter the S phase of the cell cycle, with persistent phosphorylation of mTOR, p70 S6 kinase, ribosomal protein S6, and 4EB-P1; decreased cyclin D kinase inhibitors; and transient hyperactivation of protein kinase B. Sirolimus modulated the estrogen- and autophagy-dependent volume of TSC2-/- cells. These results suggest that sirolimus may decrease the size of TSC tumors by reducing TSC2-/- cell volume, altering the cell cycle, and reprogramming TSC2-null cells.


Assuntos
Angiofibroma/tratamento farmacológico , Fibroblastos/fisiologia , Neoplasias Cutâneas/tratamento farmacológico , Pele/patologia , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo , Antibióticos Antineoplásicos/farmacologia , Autofagia , Carcinogênese , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Tamanho Celular , Reprogramação Celular , Estrogênios/metabolismo , Humanos , Mutação de Sentido Incorreto/genética , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteína 2 do Complexo Esclerose Tuberosa/genética
2.
Sci Rep ; 6: 28056, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27321128

RESUMO

Activation of inflammation in white adipose tissue (WAT), includes infiltration/expansion of WAT macrophages, contributes pathogenesis of obesity, insulin resistance, and metabolic syndrome. The inflammasome comprises an intracellular sensor (NLR), caspase-1 and the adaptor ASC. Inflammasome activation leads to maturation of caspase-1 and processing of IL1ß, contributing to many metabolic disorders and directing adipocytes to a more insulin-resistant phenotype. Ablation of PDE3B in WAT prevents inflammasome activation by reducing expression of NLRP3, caspase-1, ASC, AIM2, TNFα, IL1ß and proinflammatory genes. Following IP injection of lipopolysaccharide (LPS), serum levels of IL1ß and TNFα were reduced in PDE3B(-/-)mice compared to WT. Activation of signaling cascades, which mediate inflammasome responses, were modulated in PDE3B(-/-)mice WAT, including smad, NFAT, NFkB, and MAP kinases. Moreover, expression of chemokine CCL2, MCP-1 and its receptor CCR2, which play an important role in macrophage chemotaxis, were reduced in WAT of PDE3B(-/-)mice. In addition, atherosclerotic plaque formation was significantly reduced in the aorta of apoE(-/-)/PDE3B(-/-)and LDL-R(-/-)/PDE3B(-/-)mice compared to apoE(-/-)and LDL-R(-/-)mice, respectively. Obesity-induced changes in serum-cholesterol were blocked in PDE3B(-/-)mice. Collectively, these data establish a role for PDE3B in modulating inflammatory response, which may contribute to a reduced inflammatory state in adipose tissue.


Assuntos
Tecido Adiposo Branco/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Animais , Aorta/metabolismo , Aorta/patologia , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Caspase 1/genética , Caspase 1/metabolismo , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/deficiência , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo/efeitos dos fármacos , Insulina/metabolismo , Interleucina-1beta/sangue , Interleucina-1beta/metabolismo , Macrófagos/citologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/metabolismo
3.
Chest ; 147(3): 771-777, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25411763

RESUMO

BACKGROUND: Lymphangioleiomyomatosis (LAM) is characterized by the proliferation in the lung, axial lymphatics (eg, lymphangioleiomyomas), and kidney (eg, angiomyolipomas) of abnormal smooth muscle-like LAM cells, which express melanoma antigens such as Pmel17/gp100 and have dysfunctional tumor suppressor tuberous sclerosis complex (TSC) genes TSC2 or TSC1. Histopathologic diagnosis of LAM in lung specimens is based on identification of the Pmel17 protein with the monoclonal antibody HMB-45. METHODS: We compared the sensitivity of HMB-45 to that of antipeptide antibody αPEP13h, which reacts with a C-terminal peptide of Pmel17. LAM lung nodules were laser-capture microdissected to identify proteins by Western blotting. RESULTS: HMB-45 recognized approximately 25% of LAM cells within the LAM lung nodules, whereas αPEP13h identified > 82% of LAM cells within these structures in approximately 90% of patients. Whereas HMB-45 reacted with epithelioid but not with spindle-shaped LAM cells, αPEP13h identified both spindle-shaped and epithelioid LAM cells, providing greater sensitivity for detection of all types of LAM cells. HMB-45 recognized Pmel17 in premelanosomal organelles; αPEP13h recognized proteins in the cytoplasm as well as in premelanosomal organelles. Both antibodies recognized a Pmel17 variant of approximately 50 kDa. CONCLUSIONS: Based on its sensitivity and specificity, αPEP13h may be useful in the diagnosis of LAM and more sensitive than HMB-45.


Assuntos
Anticorpos Anti-Idiotípicos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patologia , Linfangioleiomiomatose/diagnóstico , Linfangioleiomiomatose/patologia , Nódulo Pulmonar Solitário/diagnóstico , Nódulo Pulmonar Solitário/patologia , Adulto , Anticorpos Anti-Idiotípicos/imunologia , Biópsia , Broncoscopia , Células Cultivadas , Diagnóstico Diferencial , Feminino , Humanos , Imuno-Histoquímica , Pulmão/patologia , Neoplasias Pulmonares/imunologia , Linfangioleiomiomatose/imunologia , Antígenos Específicos de Melanoma/imunologia , Pessoa de Meia-Idade , Sensibilidade e Especificidade , Nódulo Pulmonar Solitário/imunologia , Antígeno gp100 de Melanoma/imunologia
4.
Am J Respir Crit Care Med ; 188(7): 831-41, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23924348

RESUMO

RATIONALE: Alveolar transforming growth factor (TGF)-ß1 signaling and expression of TGF-ß1 target genes are increased in patients with idiopathic pulmonary fibrosis (IPF) and in animal models of pulmonary fibrosis. Internalization and degradation of TGF-ß receptor TßRI inhibits TGF-ß signaling and could attenuate development of experimental lung fibrosis. OBJECTIVES: To demonstrate that after experimental lung injury, human syndecan-2 confers antifibrotic effects by inhibiting TGF-ß1 signaling in alveolar epithelial cells. METHODS: Microarray assays were performed to identify genes differentially expressed in alveolar macrophages of patients with IPF versus control subjects. Transgenic mice that constitutively overexpress human syndecan-2 in macrophages were developed to test the antifibrotic properties of syndecan-2. In vitro assays were performed to determine syndecan-2-dependent changes in epithelial cell TGF-ß1 signaling, TGF-ß1, and TßRI internalization and apoptosis. Wild-type mice were treated with recombinant human syndecan-2 during the fibrotic phase of bleomycin-induced lung injury. MEASUREMENTS AND MAIN RESULTS: We observed significant increases in alveolar macrophage syndecan-2 levels in patients with IPF. Macrophage-specific overexpression of human syndecan-2 in transgenic mice conferred antifibrotic effects after lung injury by inhibiting TGF-ß1 signaling and downstream expression of TGF-ß1 target genes, reducing extracellular matrix production and alveolar epithelial cell apoptosis. In vitro, syndecan-2 promoted caveolin-1-dependent internalization of TGF-ß1 and TßRI in alveolar epithelial cells, which inhibited TGF-ß1 signaling and epithelial cell apoptosis. Therapeutic administration of human syndecan-2 abrogated lung fibrosis in mice. CONCLUSIONS: Alveolar macrophage syndecan-2 exerts antifibrotic effects by promoting caveolin-1-dependent TGF-ß1 and TßRI internalization and inhibiting TGF-ß1 signaling in alveolar epithelial cells. Hence, molecules that facilitate TßRI degradation via endocytosis represent potential therapies for pulmonary fibrosis.


Assuntos
Fibrose Pulmonar Idiopática/induzido quimicamente , Macrófagos Alveolares/efeitos dos fármacos , Sindecana-2/uso terapêutico , Fator de Crescimento Transformador beta1/efeitos dos fármacos , Animais , Apoptose , Bleomicina/administração & dosagem , Lavagem Broncoalveolar , Caveolina 1/efeitos dos fármacos , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Hidroxiprolina/análise , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Transdução de Sinais , Sindecana-2/fisiologia , Análise Serial de Tecidos , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/fisiologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/fisiologia
5.
Anal Biochem ; 439(2): 161-72, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23665273

RESUMO

Recent evidence suggests that the activity of mitochondrial oxidative phosphorylation complexes (MOPCs) is modulated at multiple sites. Here, a method of optically monitoring electron distribution within and between MOPCs is described using a center-mounted sample in an integrating sphere (to minimize scattering effects) with a rapid-scanning spectrometer. The redox-sensitive MOPC absorbances (∼465-630 nm) were modeled using linear least squares analysis with individual chromophore spectra. Classical mitochondrial activity transitions (e.g., ADP-induced increase in oxygen consumption) were used to characterize this approach. Most notable in these studies was the observation that intermediates of the catalytic cycle of cytochrome oxidase are dynamically modulated with metabolic state. The MOPC redox state, along with measurements of oxygen consumption and mitochondrial membrane potential, was used to evaluate the conductances of different sections of the electron transport chain. This analysis then was applied to mitochondria isolated from rabbit hearts subjected to ischemia/reperfusion (I/R). Surprisingly, I/R resulted in an inhibition of all measured MOPC conductances, suggesting a coordinated down-regulation of mitochondrial activity with this well-established cardiac perturbation.


Assuntos
Mitocôndrias/química , Óptica e Fotônica/métodos , Análise Espectral/métodos , Trifosfato de Adenosina/biossíntese , Animais , Carbono/metabolismo , Meios de Cultura , Metabolismo Energético , Coração/fisiologia , Mitocôndrias/metabolismo , Oxirredução , Consumo de Oxigênio , Perfusão , Coelhos , Traumatismo por Reperfusão , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 109(36): 14464-9, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22908276

RESUMO

Brefeldin A-inhibited guanine nucleotide-exchange protein (BIG)2 activates ADP-ribosylation factors, ∼20-kDa GTPase proteins critical for continuity of intracellular vesicular trafficking by accelerating the replacement of ADP-ribosylation factor-bound GDP with GTP. Mechanisms of additional BIG2 function(s) are less clear. Here, the participation of BIG2 in integrin ß1 cycling through actin dynamics during cell migration was identified using small interfering RNA (siRNA) and difference gel electrophoresis analyses. After a 72-h incubation with BIG2 siRNA, levels of cytosolic Arp2, Arp3, cofilin-1, phosphocofilin, vinculin, and Grb2, known to be involved in the effects of integrin ß1-extracellular matrix interactions on actin function and cell translocation, were increased. Treatment of HeLa cells with BIG2 siRNA resulted in perinuclear accumulation of integrin ß1 and its delayed return to the cell surface. Motility of BIG2-depleted cells was simultaneously decreased, as were actin-based membrane protrusions and accumulations of Arp2, Arp3, cofilin, and phosphocofilin at the leading edges of migrating cells, in wound-healing assays. Taken together, these data reveal a mechanism(s) through which BIG2 may coordinate actin cytoskeleton mechanics and membrane traffic in cell migration via integrin ß1 action and actin functions.


Assuntos
Actinas/fisiologia , Movimento Celular/fisiologia , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Integrina beta1/metabolismo , Primers do DNA/genética , Eletroforese , Proteínas da Matriz Extracelular/metabolismo , Imunofluorescência , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , RNA Interferente Pequeno/administração & dosagem , Reação em Cadeia da Polimerase em Tempo Real
7.
BMC Med Genomics ; 4: 20, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21356094

RESUMO

BACKGROUND: The vascular disease in-stent restenosis (ISR) is characterized by formation of neointima and adverse inward remodeling of the artery after injury by coronary stent implantation. We hypothesized that the analysis of gene expression in peripheral blood mononuclear cells (PBMCs) would demonstrate differences in transcript expression between individuals who develop ISR and those who do not. METHODS AND RESULTS: We determined and investigated PBMC gene expression of 358 patients undergoing an index procedure to treat in de novo coronary artery lesions with bare metallic stents, using a novel time-varying intercept model to optimally assess the time course of gene expression across a time course of blood samples. Validation analyses were conducted in an independent sample of 97 patients with similar time-course blood sampling and gene expression data. We identified 47 probesets with differential expression, of which 36 were validated upon independent replication testing. The genes identified have varied functions, including some related to cellular growth and metabolism, such as the NAB2 and LAMP genes. CONCLUSIONS: In a study of patients undergoing bare metallic stent implantation, we have identified and replicated differential gene expression in peripheral blood mononuclear cells, studied across a time series of blood samples. The genes identified suggest alterations in cellular growth and metabolism pathways, and these results provide the basis for further specific functional hypothesis generation and testing of the mechanisms of ISR.


Assuntos
Reestenose Coronária/genética , Stents , Idoso , Células Sanguíneas/metabolismo , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/metabolismo , Reestenose Coronária/metabolismo , Feminino , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Regulação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Software , Fatores de Tempo
8.
J Bioeng Biomed Sci ; Suppl 52011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24298393

RESUMO

High throughput microarray analysis has great potential in scientific research, disease diagnosis, and drug discovery. A major hurdle toward high throughput microarray analysis is the time and effort needed to accurately locate gene spots in microarray images. An automatic microarray image processor will allow accurate and efficient determination of spot locations and sizes so that gene expression information can be reliably extracted in a high throughput manner. Current microarray image processing tools require intensive manual operations in addition to the input of grid parameters to correctly and accurately identify gene spots. This work developed a method, herein called auto-spot, to automate the spot identification process. Through a series of correlation and convolution operations, as well as pixel manipulations, this method makes spot identification an automatic and accurate process. Testing with real microarray images has demonstrated that this method is capable of automatically extracting subgrids from microarray images and determining spot locations and sizes within each subgrid, regardless of variations in array patterns and background noises. With this method, we are one step closer to the goal of high throughput microarray analysis.

9.
J Immunol ; 182(3): 1270-7, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19155472

RESUMO

Lymphangioleiomyomatosis (LAM) is characterized by cystic lung destruction caused by LAM cells (smooth-muscle-like cells) that have mutations in the tumor suppressor genes tuberous sclerosis complex (TSC) 1 or 2 and have the capacity to metastasize. Since chemokines and their receptors function in chemotaxis of metastatic cells, we hypothesized that LAM cells may be recruited by chemokine(s) in the lung. Quantification of 25 chemokines in bronchoalveolar lavage fluid from LAM patients and healthy volunteers revealed that concentrations of CCL2, CXCL1, and CXCL5 were significantly higher in samples from LAM patients than those from healthy volunteers. In vitro, CCL2 or MCP-1 induced selective migration of cells, showing loss of heterozygosity of TSC2 from a heterogeneous population of cells grown from explanted LAM lungs. Additionally, the frequencies of single-nucleotide polymorphisms in the CCL2 gene promoter region differed significantly in LAM patients and healthy volunteers (p = 0.018), and one polymorphism was associated significantly more frequently with the decline of lung function. The presence (i.e., potential functionality) of chemokine receptors was evaluated using immunohistochemistry in lung sections from 30 LAM patients. Expression of chemokines and these receptors varied among LAM patients and differed from that seen in some cancers (e.g., breast cancer and melanoma cells). These observations are consistent with the notion that chemokines such as CCL2 may serve to determine mobility and specify the site of metastasis of the LAM cell.


Assuntos
Quimiocinas/fisiologia , Quimiotaxia de Leucócito/imunologia , Genes Supressores de Tumor , Linfangioleiomiomatose/imunologia , Linfangioleiomiomatose/patologia , Polimorfismo Genético/imunologia , Proteínas Supressoras de Tumor/genética , Adulto , Estudos de Casos e Controles , Linhagem Celular , Linhagem Celular Tumoral , Quimiocina CCL2/fisiologia , Quimiocina CCL27/fisiologia , Quimiocinas/biossíntese , Quimiocinas/genética , Quimiocinas CC/fisiologia , Quimiotaxia de Leucócito/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Linfangioleiomiomatose/genética , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência
10.
Am J Pathol ; 172(4): 1112-26, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18321997

RESUMO

Research suggests that monocytes differentiate into unique lineage-determined macrophage subpopulations in response to the local cytokine environment. The present study evaluated the atherogenic potential of two divergent lineage-determined human monocyte-derived macrophage subpopulations. Monocytes were differentiated for 7 days in the presence of alternative macrophage development cytokines: granulocyte-macrophage colony-stimulating factor to produce granulocyte-macrophage-CSF macrophages (GM-Mac), or macrophage colony-stimulating factor (M-CSF) to produce M-Mac. Gene chip analyses of three monocyte donors demonstrated differential expression of inflammatory and cholesterol homeostasis genes in the macrophage subpopulations. Quantitative PCR confirmed a fivefold elevation in the expression of genes that promote reverse cholesterol transport (PPAR-gamma, LXR-alpha, and ABCG1) and macrophage emigration from lesions (CCR7) in GM-Mac compared to that in M-Mac. Immunocytochemistry confirmed enhanced expression of the proinflammatory marker CD14 in M-Mac relative to GM-Mac. M-Mac spontaneously accumulated cholesterol when incubated with unmodified low-density lipoprotein whereas GM-Mac only accumulated similar levels of cholesterol after protein kinase C activation. Immunostained human coronary arteries showed that macrophages with similar antigen expression to that of M-Mac (CD68(+)/CD14(+)) were predominant within atherosclerotic lesions whereas macrophages with antigen expression similar to GM-Mac (CD68(+)/CD14(-)) were predominant in areas devoid of disease. The identification of macrophage subpopulations with different gene expression patterns and, thus, different potentials for promoting atherosclerosis has important experimental and clinical implications and could prove to be a valuable finding in developing therapeutic interventions in diseases dependent on macrophage function.


Assuntos
Aterosclerose/patologia , Macrófagos/patologia , Biomarcadores/metabolismo , Diferenciação Celular , Células Cultivadas , Colesterol/metabolismo , Vasos Coronários/patologia , Citocinas/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Inflamação , Metabolismo dos Lipídeos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Macrófagos/metabolismo , Fenótipo , Reação em Cadeia da Polimerase
11.
Proc Natl Acad Sci U S A ; 105(9): 3539-44, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18292222

RESUMO

Patients with tuberous sclerosis complex (TSC) develop hamartomas containing biallelic inactivating mutations in either TSC1 or TSC2, resulting in mammalian target of rapamycin (mTOR) activation. Hamartomas overgrow epithelial and mesenchymal cells in TSC skin. The pathogenetic mechanisms for these changes had not been investigated, and the existence or location of cells with biallelic mutations ("two-hit" cells) was unclear. We compared TSC skin hamartomas (angiofibromas and periungual fibromas) with normal-appearing skin of the same patient, and we observed more proliferation and mTOR activation in hamartoma epidermis. Two-hit cells were not detected in the epidermis. Fibroblast-like cells in the dermis, however, exhibited allelic deletion of TSC2, in both touch preparations of fresh tumor samples and cells grown from TSC skin tumors, suggesting that increased epidermal proliferation and mTOR activation were not caused by second-hit mutations in the keratinocytes but by mesenchymal-epithelial interactions. Gene expression arrays, used to identify potential paracrine factors released by mesenchymal cells, revealed more epiregulin mRNA in fibroblast-like angiofibroma and periungual fibroma cells than in fibroblasts from normal-appearing skin of the same patient. Elevation of epiregulin mRNA was confirmed with real-time PCR, and increased amounts of epiregulin protein were demonstrated with immunoprecipitation. Epiregulin stimulated keratinocyte proliferation and phosphorylation of ribosomal protein S6 in vitro. These results suggest that hamartomatous TSC skin tumors are induced by paracrine factors released by two-hit cells in the dermis and that proliferation with mTOR activation of the overlying epidermis is an effect of epiregulin.


Assuntos
Fator de Crescimento Epidérmico/genética , Epitélio/patologia , Hamartoma/patologia , Mesoderma/patologia , Comunicação Parácrina , Esclerose Tuberosa/patologia , Proliferação de Células , Fator de Crescimento Epidérmico/análise , Epirregulina , Perfilação da Expressão Gênica , Humanos , Proteínas Quinases/metabolismo , RNA Mensageiro/análise , Serina-Treonina Quinases TOR , Proteína 2 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética
12.
PLoS One ; 2(6): e544, 2007 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-17579716

RESUMO

BACKGROUND: Available blood assays for venous thromboembolism (VTE) suffer from diminished specificity. Compared with single marker tests, such as D-dimer, a multi-marker strategy may improve diagnostic ability. We used direct mass spectrometry (MS) analysis of serum from patients with VTE to determine whether protein expression profiles would predict diagnosis. METHODS AND RESULTS: We developed a direct MS and computational approach to the proteomic analysis of serum. Using this new method, we analyzed serum from inpatients undergoing radiographic evaluation for VTE. In a balanced cohort of 76 patients, a neural network-based prediction model was built using a training subset of the cohort to first identify proteomic patterns of VTE. The proteomic patterns were then validated in a separate group of patients within the cohort. The model yielded a sensitivity of 68% and specificity of 89%, which exceeded the specificity of D-dimer assay tested by latex agglutination, ELISA, and immunoturbimetric methods (sensitivity/specificity of 63.2%/60.5%, 97.4%/21.1%, 97.4%/15.8%, respectively). We validated differences in protein expression between patients with and without VTE using more traditional gel-based analysis of the same serum samples. CONCLUSION: Protein expression analysis of serum using direct MS demonstrates potential diagnostic utility for VTE. This pilot study is the first such direct MS study to be applied to a cardiovascular disease. Differences in protein expression were identified and subsequently validated in a separate group of patients. The findings in this initial cohort can be evaluated in other independent cohorts, including patients with inflammatory conditions and chronic (but not acute) VTE, for the diagnosis of VTE.


Assuntos
Biomarcadores Tumorais/sangue , Proteômica , Tromboembolia Venosa/sangue , Tromboembolia Venosa/diagnóstico , Algoritmos , Estudos de Coortes , Complicações do Diabetes/sangue , Eletroforese em Gel Bidimensional , Ensaio de Imunoadsorção Enzimática , Feminino , Produtos de Degradação da Fibrina e do Fibrinogênio/metabolismo , Cardiopatias/sangue , Cardiopatias/complicações , Humanos , Nefropatias/sangue , Nefropatias/complicações , Pneumopatias/sangue , Pneumopatias/complicações , Masculino , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/complicações , Redes Neurais de Computação , Projetos Piloto , Prognóstico , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
13.
Am J Respir Crit Care Med ; 175(11): 1151-7, 2007 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-17332483

RESUMO

RATIONALE: Alveolar macrophages are inflammatory cells that may contribute to the pathogenesis of idiopathic pulmonary fibrosis (IPF), which is characterized by excessive alveolar aggregation of cells and extracellular matrix proteins. OBJECTIVES: To identify potential molecular mechanisms of IPF. METHODS: To examine large-scale gene expression, messenger RNA isolated from alveolar macrophages and peripheral blood mononuclear cells from subjects with IPF and normal volunteers was hybridized to cDNA filters. MEASUREMENTS AND MAIN RESULTS: We showed that in IPF there is global down-regulation of gene expression in alveolar macrophages but not in blood monocytes. Nuclear run-on and pulse-chase studies showed that alveolar macrophages had significantly reduced transcription (p < 0.01). No significant difference in RNA degradation was found between subjects with IPF and normal volunteers. Western blot analyses revealed that concentrations of transcription factor II-H, a general transcription factor, were significantly lower in alveolar macrophages from subjects with IPF than in those from normal volunteers (p = 0.012). CONCLUSIONS: Impaired transcription in IPF is associated with decreased concentrations of transcription factor II-H in alveolar macrophages and may alter the intraalveolar milieu in IPF.


Assuntos
Macrófagos Alveolares/fisiologia , Fibrose Pulmonar/genética , Estabilidade de RNA , RNA Mensageiro/genética , Transcrição Gênica , Biomarcadores , Northern Blotting , Western Blotting , Progressão da Doença , Regulação para Baixo , Humanos , Monócitos/fisiologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Fator de Transcrição TFIIH/genética , Fator de Transcrição TFIIH/metabolismo
14.
J Biol Chem ; 281(44): 33053-65, 2006 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-16928680

RESUMO

The identification of ABCA1 as a key transporter responsible for cellular lipid efflux has led to considerable interest in defining its role in cholesterol metabolism and atherosclerosis. In this study, the effect of overexpressing ABCA1 in the liver of LDLr-KO mice was investigated. Compared with LDLr-KO mice, ABCA1-Tg x LDLr-KO (ABCA1-Tg) mice had significantly increased plasma cholesterol levels, mostly because of a 2.8-fold increase in cholesterol associated with a large pool of apoB-lipoproteins. ApoB synthesis was unchanged but the catabolism of (125)I-apoB-VLDL and -LDL were significantly delayed, accounting for the 1.35-fold increase in plasma apoB levels in ABCA1-Tg mice. We also found rapid in vivo transfer of free cholesterol from HDL to apoB-lipoproteins in ABCA1-Tg mice, associated with a significant 2.7-fold increase in the LCAT-derived cholesteryl linoleate content found primarily in apoB-lipoproteins. ABCA1-Tg mice had 1.4-fold increased hepatic cholesterol concentrations, leading to a compensatory 71% decrease in de novo hepatic cholesterol synthesis, as well as enhanced biliary cholesterol, and bile acid secretion. CAV-1, CYP2b10, and ABCG1 were significantly induced in ABCA1-overexpressing livers; however, no differences were observed in the hepatic expression of CYP7alpha1, CYP27alpha1, or ABCG5/G8 between ABCA1-Tg and control mice. As expected from the pro-atherogenic plasma lipid profile, aortic atherosclerosis was increased 10-fold in ABCA1-Tg mice. In summary, hepatic overexpression of ABCA1 in LDLr-KO mice leads to: 1) expansion of the pro-atherogenic apoB-lipoprotein cholesterol pool size via enhanced transfer of HDL-cholesterol to apoB-lipoproteins and delayed catabolism of cholesterol-enriched apoB-lipoproteins; 2) increased cholesterol concentration in the liver, resulting in up-regulated hepatobiliary sterol secretion; and 3) significantly enhanced aortic atherosclerotic lesions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Lipoproteínas/metabolismo , Fígado/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Aorta/metabolismo , Aorta/patologia , Aterosclerose/genética , Sistema Biliar/metabolismo , Colesterol/sangue , Progressão da Doença , Fezes , Feminino , Regulação da Expressão Gênica , Hemostasia , Humanos , Mucosa Intestinal/metabolismo , Metabolismo dos Lipídeos , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Receptores de LDL/genética , Esteróis/metabolismo
15.
PLoS Biol ; 2(12): e423, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15550989

RESUMO

Murine leukemia virus (MLV)-derived vectors are widely used for hematopoietic stem cell (HSC) gene transfer, but lentiviral vectors such as the simian immunodeficiency virus (SIV) may allow higher efficiency transfer and better expression. Recent studies in cell lines have challenged the notion that retroviruses and retroviral vectors integrate randomly into their host genome. Medical applications using these vectors are aimed at HSCs, and thus large-scale comprehensive analysis of MLV and SIV integration in long-term repopulating HSCs is crucial to help develop improved integrating vectors. We studied integration sites in HSCs of rhesus monkeys that had been transplanted 6 mo to 6 y prior with MLV- or SIV-transduced CD34(+)cells. Unique MLV (491) and SIV (501) insertions were compared to a set of in silico-generated random integration sites. While MLV integrants were located predominantly around transcription start sites, SIV integrants strongly favored transcription units and gene-dense regions of the genome. These integration patterns suggest different mechanisms for integration as well as distinct safety implications for MLV versus SIV vectors.


Assuntos
Vetores Genéticos , Genoma , Células-Tronco Hematopoéticas/virologia , Vírus da Leucemia Murina/metabolismo , Vírus da Imunodeficiência Símia/metabolismo , Células-Tronco/virologia , Animais , Antígenos CD34/biossíntese , Sítios de Ligação , Linhagem Celular , Clonagem Molecular , Análise por Conglomerados , Primers do DNA/química , Técnicas de Transferência de Genes , Macaca mulatta , Dados de Sequência Molecular , Mutação , Reação em Cadeia da Polimerase , Retroviridae/genética , Fatores de Tempo , Transcrição Gênica
16.
Pharmacogenomics ; 5(7): 952-1004, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15469413

RESUMO

BACKGROUND AND AIMS: in-stent restenosis is a major limitation of stent therapy for atherosclerosis coronary artery disease. The CardioGene Study is an ongoing study of restenosis in bare mental stents (BMS) for the treatment of coronary artery disease. The overall goal is to understand the genetic determinants of the responses to vascular injury that result in the development of restenosis in some patients but not in others. Gene expression profiling at transcriptional and translational levels provides global assessment of gene activity after vascular injury and mechanistic insight. Furthermore, the delineation of genetic biomarkers would be of value in the clinical setting of risk-stratify patients prior to stent therapy. Prospective risk stratification would allow for the rational selection of specialized treatments against the development of in-stent restenosis (ISR), such as drug-eluting stents. SETTING: Patients are enrolled at two sites in the US with high-volume cardiac catheterization facilities: the William Beaumont Hospital in Royal Oak, MI, USA, and the Mayo Clinic in Rochester, MN, USA. STUDY DESIGN: Two complementary study designs are used to understand the molecular mechanisms of restenosis and the genetic biomarkers predictive of restenosis. First, 350 patients are enrolled prospectively at the time of stent implantation. Blood is sampled prior to stent placement and afterwards at 2 weeks and 6 months. The clinical outcome of restenosis is determined 6 and 12 months after stent placement. The primary outcome is clinical restenosis at 6 months. The major secondary outcome is clinical restenosis at 12 months. Second, a corollary case-control analysis will be carried out with the enrollment of an additional 250 cases with a history of recurrent restenosis after treatment with BMS. Controls for this analysis are derived from the prospective cohort. PATIENTS AND METHODS: Consecutive patients presenting to the cardiac catheterization laboratory are screened, informed about the study and enrolled after signing the consent form. Enrollment has been completed for the prospective cohort, and enrollment of the additional group is ongoing. A standardized questionnaire is used to collect clinical data primarily through direct patient interview to assess medical history, medication use, functional status, family history, environmental factors, and social history. Further data are abstracted from the medical charts and catheterization reports. A total of 276 clinical variables are collected per individual at baseline, and 49 variables are collected at each of the 6- and 12-month follow-up visits. A Clinical Events Committee adjudicates clinical outcomes. Blood samples are processed at each clinical enrollment site using standardized operating procedures. From each blood sample, several aliquots are prepared and stored of peripheral blood mononuclear cells, granulocytes, platelets, serum, and plasma. Additionally, a portion of each patient's leukocytes is cryopreserved for future cell-line creation. Samples are frozen and shipped to the National Heart, Lung and Blood Institute (NHLBI). Additional materials generated in the analysis of the samples at the NHLBI are frozen and stored, including isolated genomic DNA, total RNA, reverse transcribed cDNA libraries and labeled RNA hybridization mixtures used in microarray analysis. Per individual in the prospective cohort, high-quality transcript profiles of peripheral blood mononuclear cells at each time of blood sampling are obtained using Affymetrix U133A microarrays (Affymetrix, Santa Clara, CA, USA). Per chip, this yields 495,930 features per individual per time of sampling. This represents expression levels for 22,283 genes per patients oer time of blood sampling, including 14,500 well-characterized human genes. Proteomics of plasma is performed with multidimensional liquid chromatography and tandem mass spectrometry. Protein expression is examined similarly to mRNA expression as a measure of gene expression. Genotyping is performed in two manners. First, those genes showing differential expression at the levels of mRNA and protein are investigated using a candidate gene approach. Specific variants in known gene regulatory regions, such as promoters, are sought initially, as those variants may explain differences in expression level. Second, a genome-wide scan is used to identify genetic loci that are associated with ISR. Those regions identified are further examined for genes that show differential expression in the mRNA microarray profiling or proteomics investigations. These genes are finely investigated for candidate SNPs and other gene variants. Complementary genomic and proteomic approaches are expected to be robust. Integration of data sets is accomplished using a variety of informatics tools, organization of gene expression into functional pathways, and investigation of physical maps of up- and downregulated sets of genes. CONCLUSIONS: The CardioGene Study is designed to understand ISR. Global gene and protein expression profiling define molecular phenotypes of patients. Well-defined clinical phenotypes will be paired with genomic data to define analyses aimed to achieve several goals. These include determining blood gene and protein expression in patients with ISR, investigating the genetic basis of ISR, developing predictive gene and protein biomarkers, and the identification of new targets for treatment.


Assuntos
Ensaios Clínicos como Assunto/métodos , Reestenose Coronária/genética , Genômica/métodos , Stents/efeitos adversos , Reestenose Coronária/sangue , Reestenose Coronária/metabolismo , Perfilação da Expressão Gênica/métodos , Genótipo , Humanos , Estudos Multicêntricos como Assunto/métodos , Seleção de Pacientes , Fenótipo , Polimorfismo de Nucleotídeo Único , Valor Preditivo dos Testes , Estudos Prospectivos , Proteômica/métodos , RNA Mensageiro/biossíntese , Projetos de Pesquisa , Fatores de Risco , Resultado do Tratamento
17.
Blood ; 104(13): 4210-8, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15315976

RESUMO

Aneuploidy, especially monosomy 7 and trisomy 8, is a frequent cytogenetic abnormality in the myelodysplastic syndromes (MDSs). Patients with monosomy 7 and trisomy 8 have distinctly different clinical courses, responses to therapy, and survival probabilities. To determine disease-specific molecular characteristics, we analyzed the gene expression pattern in purified CD34 hematopoietic progenitor cells obtained from MDS patients with monosomy 7 and trisomy 8 using Affymetrix GeneChips. Two methods were employed: standard hybridization and a small-sample RNA amplification protocol for the limited amounts of RNA available from individual cases; results were comparable between these 2 techniques. Microarray data were confirmed by gene amplification and flow cytometry using individual patient samples. Genes related to hematopoietic progenitor cell proliferation and blood cell function were dysregulated in CD34 cells of both monosomy 7 and trisomy 8 MDS. In trisomy 8, up-regulated genes were primarily involved in immune and inflammatory responses, and down-regulated genes have been implicated in apoptosis inhibition. CD34 cells in monosomy 7 showed up-regulation of genes inducing leukemia transformation and tumorigenesis and apoptosis and down-regulation of genes controlling cell growth and differentiation. These results imply distinct molecular mechanisms for monosomy 7 and trisomy 8 MDS and implicate specific pathogenic pathways.


Assuntos
Aberrações Cromossômicas , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/fisiologia , Síndromes Mielodisplásicas/genética , Adulto , Antígenos CD/análise , Antígenos CD34/análise , Células da Medula Óssea/patologia , Cromossomos Humanos Par 7/genética , Cromossomos Humanos Par 8/genética , Primers do DNA , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndromes Mielodisplásicas/patologia , Proteínas de Neoplasias/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
18.
Blood ; 103(1): 325-32, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14504100

RESUMO

An immune pathophysiology for acquired aplastic anemia (AA) has been inferred from the responsiveness of the patients to immunosuppressive therapies and experimental laboratory data. To address the transcriptome of hematopoietic cells in AA, we undertook GeneChip analysis of the extremely limited numbers of progenitor and stem cells in the marrow of patients with this disease. We pooled total RNA from highly enriched bone marrow CD34 cells of 36 patients with newly diagnosed AA and 12 healthy volunteers for analysis on oligonucleotide chips. A large number of genes implicated in apoptosis and cell death showed markedly increased expression in AA CD34 cells, and negative proliferation control genes also had increased activity. Conversely, cell cycle progress-enhancing genes showed low expression in AA. Cytokine/chemokine signal transducer genes, stress response genes, and defense/immune response genes were up-regulated, as anticipated from other evidence of the heightened immune activity in AA patients' marrow. In summary, detailed genetic analysis of small numbers of hematopoietic progenitor cells is feasible even in marrow failure states where such cells are present in very small numbers. The gene expression profile of primary human CD34 hematopoietic stem cells from AA was consistent with a stressed, dying, and immunologically activated target cell population. Many of the genes showing differential expression in AA deserve further detailed analysis, including comparison with other marrow failure states and autoimmune disease.


Assuntos
Anemia Aplástica/genética , Anemia Aplástica/imunologia , Antígenos CD34/metabolismo , Adolescente , Adulto , Idoso , Anemia Aplástica/patologia , Sequência de Bases , Estudos de Casos e Controles , Ciclo Celular/genética , Divisão Celular/genética , Criança , DNA Complementar/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos
19.
Proteins ; 53(2): 307-19, 2003 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-14517981

RESUMO

The potential for therapeutic specificity in regulating diseases and for reduced side effects has made cannabinoid (CB) receptors one of the most important G-protein-coupled receptor (GPCR) targets for drug discovery. The cannabinoid (CB) receptor subtype CB2 is of particular interest due to its involvement in signal transduction in the immune system and its increased characterization by mutational and other studies. However, our understanding of their mode of action has been limited by the absence of an experimental receptor structure. In this study, we have developed a 3D model of the CB2 receptor based on the recent crystal structure of a related GPCR, bovine rhodopsin. The model was developed using multiple sequence alignment of homologous receptor sub-types in humans and mammals, and compared with other GPCRs. Alignments were analyzed with mutation scores, pairwise hydrophobicity profiles and Kyte-Doolittle plots. The 3D model of the transmembrane segment was generated by mapping the CB2 sequence onto the homologous residues of the rhodopsin structure. The extra- and intracellular loop regions of the CB2 were generated by searching for homologous C(alpha) backbone sequences in published structures in the Brookhaven Protein Databank (PDB). Residue side chains were positioned through a combination of rotamer library searches, simulated annealing and minimization. Intermediate models of the 7TM helix bundles were analyzed in terms of helix tilt angles, hydrogen-bond networks, conserved residues and motifs, possible disulfide bonds. The amphipathic cytoplasmic helix domain was also correlated with biological and site-directed mutagenesis data. Finally, the model receptor-binding cavity was characterized using solvent-accessible surface approach.


Assuntos
Modelos Moleculares , Receptor CB2 de Canabinoide/química , Sequência de Aminoácidos , Aminoácidos/química , Dissulfetos/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores Acoplados a Proteínas G/química , Alinhamento de Sequência
20.
J Biol Chem ; 278(36): 33637-44, 2003 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-12807916

RESUMO

Mammalian target of rapamycin (mTOR) and phosphatidylinositol 3-kinase (PI3K) regulate cell growth, protein synthesis, and apoptosis in response to nutrients and mitogens. As an important source of nitric oxide during inflammation, human inducible nitric oxide synthase also plays a role in the regulation of cytokine-driven cell proliferation and apoptosis. The role of mTOR and PI3K in the activation of human inducible nitric oxide synthase transcription by cytokines and lipopolysaccharide (LPS) was investigated in lung epithelial adenocarcinoma (A549) cells. LY294002, a dual mTOR and PI3K inhibitor, blocked human inducible nitric oxide synthase (hiNOS) promoter activation and mRNA induction by cytokines and LPS in a PI3K-independent fashion. On gene expression analysis, LY294002 selectively blocked the induction of a subset of 14 LPS/interferon-gamma (IFN-gamma)-induced genes, previously characterized as signal transducer and activator of transcription-1 (STAT1)-dependent. LY294002, but not wortmannin, inhibited LPS/IFN-gamma-dependent STAT1 phosphorylation at Ser-727 and STAT1 activity. Consistent with dual inhibition of mTOR and PI3K by LY294002, dominant-negative mTOR, anti-mTOR small interfering RNA, or rapamycin each inhibited phosphorylation of STAT1 only in the presence of wortmannin. LPS/IFN-gamma led to the formation of a macromolecular complex containing mTOR, STAT1, as well as protein kinase C delta, a known STAT1alpha kinase. Thus, LPS and IFN-gamma activate the PI3K and mTOR pathways, which converge to regulate STAT1-dependent transcription of pro-apoptotic and pro-inflammatory genes in a rapamycin-insensitive manner.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Interferon gama/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas Quinases/metabolismo , Transativadores/metabolismo , Transcrição Gênica , Androstadienos/farmacologia , Apoptose , Northern Blotting , Divisão Celular , Cromonas/farmacologia , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Genes Dominantes , Humanos , Inflamação , Modelos Biológicos , Morfolinas/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo II , Análise de Sequência com Séries de Oligonucleotídeos , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Proteína Quinase C/metabolismo , Proteína Quinase C-delta , RNA Interferente Pequeno/metabolismo , Fator de Transcrição STAT1 , Serina/química , Serina-Treonina Quinases TOR , Transfecção , Células Tumorais Cultivadas , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...