Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 15(11): 1730-1748, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36426129

RESUMO

The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.

2.
Sci Rep ; 9(1): 12956, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506545

RESUMO

Ectocarpus is a filamentous brown alga, which cell wall is composed mainly of alginates and fucans (80%), two non-crystalline polysaccharide classes. Alginates are linear chains of epimers of 1,4-linked uronic acids, ß-D-mannuronic acid (M) and α-L-guluronic acid (G). Previous physico-chemical studies showed that G-rich alginate gels are stiffer than M-rich alginate gels when prepared in vitro with calcium. In order to assess the possible role of alginates in Ectocarpus, we first immunolocalised M-rich or G-rich alginates using specific monoclonal antibodies along the filament. As a second step, we calculated the tensile stress experienced by the cell wall along the filament, and varied it with hypertonic or hypotonic solutions. As a third step, we measured the stiffness of the cell along the filament, using cell deformation measurements and atomic force microscopy. Overlapping of the three sets of data allowed to show that alginates co-localise with the stiffest and most stressed areas of the filament, namely the dome of the apical cell and the shanks of the central round cells. In addition, no major distinction between M-rich and G-rich alginate spatial patterns could be observed. Altogether, these results support that both M-rich and G-rich alginates play similar roles in stiffening the cell wall where the tensile stress is high and exposes cells to bursting, and that these roles are independent from cell growth and differentiation.


Assuntos
Alginatos/metabolismo , Parede Celular/química , Ácidos Hexurônicos/metabolismo , Phaeophyceae/fisiologia , Estresse Mecânico , Resistência à Tração , Parede Celular/metabolismo , Citoesqueleto/fisiologia , Propriedades de Superfície
3.
PLoS Biol ; 17(1): e2005258, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30640903

RESUMO

Tip growth has been studied in pollen tubes, root hairs, and fungal and oomycete hyphae and is the most widely distributed unidirectional growth process on the planet. It ensures spatial colonization, nutrient predation, fertilization, and symbiosis with growth speeds of up to 800 µm h-1. Although turgor-driven growth is intuitively conceivable, a closer examination of the physical processes at work in tip growth raises a paradox: growth occurs where biophysical forces are low, because of the increase in curvature in the tip. All tip-growing cells studied so far rely on the modulation of cell wall extensibility via the polarized excretion of cell wall-loosening compounds at the tip. Here, we used a series of quantitative measurements at the cellular level and a biophysical simulation approach to show that the brown alga Ectocarpus has an original tip-growth mechanism. In this alga, the establishment of a steep gradient in cell wall thickness can compensate for the variation in tip curvature, thereby modulating wall stress within the tip cell. Bootstrap analyses support the robustness of the process, and experiments with fluorescence recovery after photobleaching (FRAP) confirmed the active vesicle trafficking in the shanks of the apical cell, as inferred from the model. In response to auxin, biophysical measurements change in agreement with the model. Although we cannot strictly exclude the involvement of a gradient in mechanical properties in Ectocarpus morphogenesis, the viscoplastic model of cell wall mechanics strongly suggests that brown algae have evolved an alternative strategy of tip growth. This strategy is largely based on the control of cell wall thickness rather than fluctuations in cell wall mechanical properties.


Assuntos
Phaeophyceae/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Forma Celular , Parede Celular , Recuperação de Fluorescência Após Fotodegradação/métodos , Ácidos Indolacéticos/metabolismo , Modelos Biológicos
4.
Trends Plant Sci ; 24(2): 130-141, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30472067

RESUMO

In plants, cell growth is constrained by a stiff cell wall, at least this is the way textbooks usually present it. Accordingly, many studies have focused on the elasticity and plasticity of the cell wall as prerequisites for expansion during growth. With their specific evolutionary history, cell wall composition, and environment, brown algae present a unique configuration offering a new perspective on the involvement of the cell wall, viewed as an inert material yet with intrinsic mechanical properties, in growth. In light of recent findings, we explore here how much of the functional relationship between cell wall chemistry and intrinsic mechanics on the one hand, and growth on the other hand, has been uncovered in brown algae.


Assuntos
Phaeophyceae , Evolução Biológica , Ciclo Celular , Parede Celular , Plantas
5.
Sci Rep ; 8(1): 4616, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29545638

RESUMO

Analysis of the establishment of epithalamic asymmetry in two non-conventional model organisms, a cartilaginous fish and a lamprey, has suggested that an essential role of Nodal signalling, likely to be ancestral in vertebrates, may have been largely lost in zebrafish. In order to decipher the cellular mechanisms underlying this divergence, we have characterised neurogenetic asymmetries during habenular development in the catshark Scyliorhinus canicula and addressed the mechanism involved in this process. As in zebrafish, neuronal differentiation starts earlier on the left side in the catshark habenulae, suggesting the conservation of a temporal regulation of neurogenesis. At later stages, marked, Alk4/5/7 dependent, size asymmetries having no clear counterparts in zebrafish also develop in neural progenitor territories, with a larger size of the proliferative, pseudostratified neuroepithelium, in the right habenula relative to the left one, but a higher cell number on the left of a more lateral, later formed population of neural progenitors. These data show that mechanisms resulting in an asymmetric, preferential maintenance of neural progenitors act both in the left and the right habenulae, on different cell populations. Such mechanisms may provide a substrate for quantitative variations accounting for the variability in size and laterality of habenular asymmetries across vertebrates.


Assuntos
Evolução Biológica , Embrião não Mamífero/citologia , Lateralidade Funcional , Regulação da Expressão Gênica no Desenvolvimento , Habenula/crescimento & desenvolvimento , Neurogênese , Animais , Benzodioxóis/farmacologia , Embrião não Mamífero/fisiologia , Habenula/fisiologia , Imidazóis/farmacologia , Piridinas/farmacologia , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Transdução de Sinais
6.
J R Soc Interface ; 14(127)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28228537

RESUMO

A biomechanical model is proposed for the growth of the brown alga Ectocarpus siliculosus Featuring ramified uniseriate filaments, this alga has two modes of growth: apical growth and intercalary growth with branching. Apical growth occurs upon the mitosis of a young cell at one extremity and leads to a new tip cell followed by a cylindrical cell, whereas branching mainly occurs when a cylindrical cell becomes rounded and swells, forming a spherical cell. Given the continuous interplay between cell growth and swelling, a poroelastic model combining osmotic pressure and volumetric growth is considered for the whole cell, cytoplasm and cell wall. The model recovers the morphogenetic transformations of mature cells: transformation of a cylindrical shape into spherical shape with a volumetric increase, and then lateral branching. Our simulations show that the poro-elastic model, including the Mooney-Rivlin approach for hyper-elastic materials, can correctly reproduce the observations. In particular, branching appears to be a plasticity effect due to the high level of tension created after the increase in volume of mature cells.


Assuntos
Modelos Biológicos , Phaeophyceae/crescimento & desenvolvimento
7.
Methods Mol Biol ; 1456: 127-139, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27770363

RESUMO

Epigenetic response to stress in plants involves changes in DNA methylation, histone modifications, and expression of small noncoding RNAs (sRNA). Here we present the method of analysis of differential expression of sRNA populations using DNA tiling arrays. sRNA extracted from Arabidopsis thaliana plants exposed to pathogen elicitor or control plants were reverse-transcribed into cDNAs, and subsequently hybridized after labeling to a custom-made DNA tiling array covering Arabidopsis chromosome 4. We first designed a control experiment with eight cDNA clones corresponding to sequences located on chromosome 4 and obtained robust and specific hybridization signals. Furthermore, hybridization signals along chromosome 4 were in good agreement with sRNA abundance as previously determined by massive parallel sequence signature (MPSS) in the case of untreated plants, but differed substantially after stress treatment. These results demonstrate the utility of hybridization to DNA tiling arrays to detect major changes in sRNA abundance.


Assuntos
Perfilação da Expressão Gênica/métodos , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Pequeno RNA não Traduzido/genética , Arabidopsis/genética , Biblioteca Gênica , Reprodutibilidade dos Testes , Estresse Fisiológico/genética
8.
Front Plant Sci ; 6: 68, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25745426

RESUMO

Mutagenesis is the only process by which unpredicted biological gene function can be identified. Despite that several macroalgal developmental mutants have been generated, their causal mutation was never identified, because experimental conditions were not gathered at that time. Today, progresses in macroalgal genomics and judicious choices of suitable genetic models make mutated gene identification possible. This article presents a comparative study of two methods aiming at identifying a genetic locus in the brown alga Ectocarpus siliculosus: positional cloning and Next-Generation Sequencing (NGS)-based mapping. Once necessary preliminary experimental tools were gathered, we tested both analyses on an Ectocarpus morphogenetic mutant. We show how a narrower localization results from the combination of the two methods. Advantages and drawbacks of these two approaches as well as potential transfer to other macroalgae are discussed.

9.
Front Plant Sci ; 6: 54, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713580

RESUMO

Laser capture microdissection (LCM) facilitates the isolation of individual cells from tissue sections, and when combined with RNA amplification techniques, it is an extremely powerful tool for examining genome-wide expression profiles in specific cell-types. LCM has been widely used to address various biological questions in both animal and plant systems, however, no attempt has been made so far to transfer LCM technology to macroalgae. Macroalgae are a collection of widespread eukaryotes living in fresh and marine water. In line with the collective effort to promote molecular investigations of macroalgal biology, here we demonstrate the feasibility of using LCM and cell-specific transcriptomics to study development of the brown alga Ectocarpus siliculosus. We describe a workflow comprising cultivation and fixation of algae on glass slides, laser microdissection, and RNA amplification. To illustrate the effectiveness of the procedure, we show qPCR data and metrics obtained from cell-specific transcriptomes generated from both upright and prostrate filaments of Ectocarpus.

10.
Nucleic Acids Res ; 42(1): 417-29, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24078085

RESUMO

We used an in silico approach to predict microRNAs (miRNAs) genome-wide in the brown alga Ectocarpus siliculosus. As brown algae are phylogenetically distant from both animals and land plants, our approach relied on features shared by all known organisms, excluding sequence conservation, genome localization and pattern of base-pairing with the target. We predicted between 500 and 1500 miRNAs candidates, depending on the values of the energetic parameters used to filter the potential precursors. Using quantitative polymerase chain reaction assays, we confirmed the existence of 22 miRNAs among 72 candidates tested, and of 8 predicted precursors. In addition, we compared the expression of miRNAs and their precursors in two life cycle states (sporophyte, gametophyte) and under salt stress. Several miRNA precursors, Argonaute and DICER messenger RNAs were differentially expressed in these conditions. Finally, we analyzed the gene organization and the target functions of the predicted candidates. This showed that E. siliculosus miRNA genes are, like plant miRNA genes, rarely clustered and, like animal miRNA genes, often located in introns. Among the predicted targets, several widely conserved functional domains are significantly overrepresented, like kinesin, nucleotide-binding/APAF-1, R proteins and CED-4 (NB-ARC) and tetratricopeptide repeats. The combination of computational and experimental approaches thus emphasizes the originality of molecular and cellular processes in brown algae.


Assuntos
MicroRNAs/metabolismo , Phaeophyceae/genética , Sequência de Bases , Simulação por Computador , Sequência Conservada , Genômica , MicroRNAs/química , MicroRNAs/genética , Dados de Sequência Molecular , Precursores de RNA/química , Precursores de RNA/metabolismo
11.
Plant Signal Behav ; 6(12): 1889-92, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22095146

RESUMO

Ectocarpus siliculosus is being developed as a model organism for brown algal genetics and genomics. Brown algae are phylogenetically distant from the other multicellular phyla (green lineage, red algae, fungi and metazoan) and therefore might offer the opportunity to study novel and alternative developmental processes that lead to the establishment of multicellularity. E. siliculosus develops as uniseriate filaments, thereby displaying one of the simplest architectures among multicellular organisms. The young sporophyte grows as a primary filament and then branching occurs, preferentially at the center of the filament. We recently described the first morphogenetic mutant étoile (etl) in a brown alga, produced by UVB mutagenesis in E. siliculosus. We showed that a single recessive mutation was responsible for a defect in both cell differentiation and the very early branching pattern (first and second branch emergences). Here, we supplement this study by reporting the branching defects observed subsequently, i.e. for the later stages corresponding to the emergence of up to the first six secondary filaments, and we show that the branching process is composed of at least two distinct components: time and position.


Assuntos
Mutação , Phaeophyceae/crescimento & desenvolvimento , Morfogênese , Phaeophyceae/genética , Fatores de Tempo
12.
Plant Cell ; 23(4): 1666-78, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21478443

RESUMO

Brown algae are multicellular marine organisms evolutionarily distant from both metazoans and land plants. The molecular or cellular mechanisms that govern the developmental patterning in brown algae are poorly characterized. Here, we report the first morphogenetic mutant, étoile (etl), produced in the brown algal model Ectocarpus siliculosus. Genetic, cellular, and morphometric analyses showed that a single recessive locus, ETL, regulates cell differentiation: etl cells display thickening of the extracellular matrix (ECM), and the elongated, apical, and actively dividing E cells are underrepresented. As a result of this defect, the overrepresentation of round, branch-initiating R cells in the etl mutant leads to the rapid induction of the branching process at the expense of the uniaxial growth in the primary filament. Computational modeling allowed the simulation of the etl mutant phenotype by including a modified response to the neighborhood information in the division rules used to specify wild-type development. Microarray experiments supported the hypothesis of a defect in cell-cell communication, as primarily Lin-Notch-domain transmembrane proteins, which share similarities with metazoan Notch proteins involved in binary cell differentiation were repressed in etl. Thus, our study highlights the role of the ECM and of novel transmembrane proteins in cell-cell communication during the establishment of the developmental pattern in this brown alga.


Assuntos
Padronização Corporal/genética , Loci Gênicos/genética , Phaeophyceae/crescimento & desenvolvimento , Phaeophyceae/genética , Diferenciação Celular , Tamanho Celular , Segregação de Cromossomos/genética , Simulação por Computador , Cruzamentos Genéticos , Genes Recessivos/genética , Células Germinativas Vegetais/citologia , Células Germinativas Vegetais/crescimento & desenvolvimento , Células Germinativas Vegetais/ultraestrutura , Mutagênese/genética , Mutação/genética , Phaeophyceae/citologia , Phaeophyceae/ultraestrutura , Fenótipo , Estrutura Terciária de Proteína
13.
Plant Physiol ; 153(1): 128-44, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20200071

RESUMO

Ectocarpus siliculosus is a small brown alga that has recently been developed as a genetic model. Its thallus is filamentous, initially organized as a main primary filament composed of elongated cells and round cells, from which branches differentiate. Modeling of its early development suggests the involvement of very local positional information mediated by cell-cell recognition. However, this model also indicates that an additional mechanism is required to ensure proper organization of the branching pattern. In this paper, we show that auxin indole-3-acetic acid (IAA) is detectable in mature E. siliculosus organisms and that it is present mainly at the apices of the filaments in the early stages of development. An in silico survey of auxin biosynthesis, conjugation, response, and transport genes showed that mainly IAA biosynthesis genes from land plants have homologs in the E. siliculosus genome. In addition, application of exogenous auxins and 2,3,5-triiodobenzoic acid had different effects depending on the developmental stage of the organism, and we propose a model in which auxin is involved in the negative control of progression in the developmental program. Furthermore, we identified an auxin-inducible gene called EsGRP1 from a small-scale microarray experiment and showed that its expression in a series of morphogenetic mutants was positively correlated with both their elongated-to-round cell ratio and their progression in the developmental program. Altogether, these data suggest that IAA is used by the brown alga Ectocarpus to relay cell-cell positional information and induces a signaling pathway different from that known in land plants.


Assuntos
Ácidos Indolacéticos/metabolismo , Morfogênese , Phaeophyceae/metabolismo , Sequência de Aminoácidos , Dados de Sequência Molecular , Mutação , Phaeophyceae/genética , Phaeophyceae/crescimento & desenvolvimento , Transdução de Sinais
14.
Methods Mol Biol ; 631: 75-86, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20204870

RESUMO

Small RNA (sRNA) populations extracted from Arabidopsis plants submitted or not to biotic stress, were reverse-transcribed into cDNAs, and these were subsequently hybridized after labelling to a custom-made DNA tiling array covering Arabidopsis chromosome 4. We first designed a control experiment with eight cDNA clones corresponding to sequences located on chromosome 4 and obtained robust and specific hybridization signals. Furthermore, hybridization signals along chromosome 4 were in good agreement with sRNA abundance as previously determined by Massive Parallel Sequence Signature (MPSS) in the case of untreated plants, but differed substantially after stress treatment. These results demonstrate the utility of hybridization to DNA tiling arrays to detect major changes in small RNA populations.


Assuntos
Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos , RNA de Plantas/análise , RNA não Traduzido/análise , Arabidopsis/química , Cromossomos de Plantas/genética , DNA Complementar , DNA de Plantas , Estresse Fisiológico/genética
15.
J Phycol ; 44(5): 1269-81, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27041723

RESUMO

The distant phylogenetic position of brown macroalgae from the other multicellular phyla offers the opportunity to study novel and alternative developmental processes involved in the establishment of multicellularity. At present, however, very little information is available about developmental patterning in this group. Ectocarpus siliculosus (Dillwyn) Lyngb. has uniseriate filaments and displays one of the simplest architectures in the Phaeophyceae. The aim of this study was to decipher the morphogenetic steps that lead to the development of the Ectocarpus sporophyte. We carried out a detailed morphometric study of the events that occurred between gamete germination and the 100-cell stage. This analysis was performed on two ecologically distant isolates to assess plasticity in developmental patterning within this species. Cell sizes were measured in both isolates, allowing the definition of two main cell types based on their shape (round and elongated). On average, the filament is composed of about 40% round cells, which are present in the central region of the filament, but different combinations of the two cell types within filaments were observed and quantified. Young sporophytes grew apically, with elongated cells progressively differentiating into round cells. Secondary filaments emerged preferentially on round cells, primarily from the older central cells. Statistical analyses showed that the pattern of branching was regulated to ensure a stereotyped architecture. This description of the developmental patterning during the growth of the E. siliculosus sporophyte will serve as a base for more detailed studies of development, in this species and in brown algae in general.

16.
Funct Plant Biol ; 35(10): 1014-1024, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688850

RESUMO

Early development of the filamentous brown alga Ectocarpus siliculosus (Dillwyn) Lyngbye involves two cell types that are arranged in a polymorphic, but constrained, pattern. The present study aimed to decipher the cellular processes responsible for the establishment of this pattern. Thorough observations characterised five different events of division and differentiation that occurred during the early development. The hypothesis that a local control is responsible for these processes was tested. To do so, Ectomat, a stochastic automaton in which each cell only interacts with its closest neighbour(s), was created. The probabilities for the five events were adjusted to fit to the observations. Simulations with Ectomat reconstructed most of the essential properties of the sporophyte development, in terms of cell-type proportion, relative position and growth dynamics. The whole organism properties emerged by applying local transition rules. In conclusion, no global position information system was required at this development stage. Randomly occurring cell events, driven by simple contact interactions, are sufficient to account for the early filament development and establishment of the cell-type pattern of E. siliculosus.

17.
J Soc Biol ; 201(3): 267-80, 2007.
Artigo em Francês | MEDLINE | ID: mdl-18157079

RESUMO

In response to environmental constraints, living organisms organise their body according to axes, rotation and translation plans, or asymmetries. Cellular and molecular processes are involved in the establishment of this architecture. Hence, this review aims at presenting the molecular mechanisms controlling the main symmetries and axes in plants. Several genes, coding for transcription factors, have been identified in land plants (mainly Arabidopsis thaliana), as controlling the establishment of apico-basal and adaxial-abaxial axes mainly. The establishment of these axes allows the development in other spatial directions of radial or bilateral symmetries. These processes seem in most cases to be under the control of the phytohormone auxin. In brown algae, which are all multicellular marine plants, polarity plans are less obvious than in land plants. The development of the model brown alga Ectocarpus siliculosus is currently being studied. E. siliculosus develops a filamentous architecture, and primary observations show that branching along the main axis occurs in a non-stereotyped and regular way, even though it is mainly centred. However, more detailed morphometrical studies, accompanied by probabilistic analyses, have shown that, among the overall population of individuals, organisms obey yet unidentified biological constraints, that aim at refining the radial symmetry as the organism grows. The role of this symmetry in the adaptation of E. siliculosus to its environment, as well as the molecular actors involved in this process, are currently under study in our laboratory.


Assuntos
Phaeophyceae/fisiologia , Animais , Meio Ambiente , Biologia Molecular/métodos , Phaeophyceae/classificação , Phaeophyceae/citologia , Fenômenos Fisiológicos Vegetais , Água do Mar/microbiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...