Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 14(10): e1007591, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30325923

RESUMO

A primary goal of the recent investment in sequencing is to detect novel genetic associations in health and disease improving the development of treatments and playing a critical role in precision medicine. While this investment has resulted in an enormous total number of sequenced genomes, individual studies of complex traits and diseases are often smaller and underpowered to detect rare variant genetic associations. Existing genetic resources such as the Exome Aggregation Consortium (>60,000 exomes) and the Genome Aggregation Database (~140,000 sequenced samples) have the potential to be used as controls in these studies. Fully utilizing these and other existing sequencing resources may increase power and could be especially useful in studies where resources to sequence additional samples are limited. However, to date, these large, publicly available genetic resources remain underutilized, or even misused, in large part due to the lack of statistical methods that can appropriately use this summary level data. Here, we present a new method to incorporate external controls in case-control analysis called ProxECAT (Proxy External Controls Association Test). ProxECAT estimates enrichment of rare variants within a gene region using internally sequenced cases and external controls. We evaluated ProxECAT in simulations and empirical analyses of obesity cases using both low-depth of coverage (7x) whole-genome sequenced controls and ExAC as controls. We find that ProxECAT maintains the expected type I error rate with increased power as the number of external controls increases. With an accompanying R package, ProxECAT enables the use of publicly available allele frequencies as external controls in case-control analysis.


Assuntos
Variação Genética , Estudo de Associação Genômica Ampla/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Algoritmos , Estudos de Casos e Controles , Simulação por Computador , Frequência do Gene , Genótipo , Humanos , Modelos Genéticos , Distribuição de Poisson
2.
BMC Bioinformatics ; 10: 96, 2009 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-19323838

RESUMO

BACKGROUND: An important component of time course microarray studies is the identification of genes that demonstrate significant time-dependent variation in their expression levels. Until recently, available methods for performing such significance tests required replicates of individual time points. This paper describes a replicate-free method that was developed as part of a study of the estrous cycle in the rat mammary gland in which no replicate data was collected. RESULTS: A temporal test statistic is proposed that is based on the degree to which data are smoothed when fit by a spline function. An algorithm is presented that uses this test statistic together with a false discovery rate method to identify genes whose expression profiles exhibit significant temporal variation. The algorithm is tested on simulated data, and is compared with another recently published replicate-free method. The simulated data consists both of genes with known temporal dependencies, and genes from a null distribution. The proposed algorithm identifies a larger percentage of the time-dependent genes for a given false discovery rate. Use of the algorithm in a study of the estrous cycle in the rat mammary gland resulted in the identification of genes exhibiting distinct circadian variation. These results were confirmed in follow-up laboratory experiments. CONCLUSION: The proposed algorithm provides a new approach for identifying expression profiles with significant temporal variation without relying on replicates. When compared with a recently published algorithm on simulated data, the proposed algorithm appears to identify a larger percentage of time-dependent genes for a given false discovery rate. The development of the algorithm was instrumental in revealing the presence of circadian variation in the virgin rat mammary gland during the estrous cycle.


Assuntos
Algoritmos , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Ritmo Circadiano/fisiologia , Glândulas Mamárias Animais/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...