Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 156
Filtrar
1.
Geroscience ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954128

RESUMO

Calorie restriction has many beneficial effects on healthspan and lifespan in a variety of species. However, how late in life application of caloric restriction can extend fly life is not clear. Here we show that late-life calorie restriction increases lifespan in female Drosophila melanogaster aged on a high-calorie diet. This shift results in rapid decrease in mortality rate and extends fly lifespan. In contrast, shifting female flies from a low- to a high-calorie diet leads to a rapid increase in mortality and shorter lifespan. These changes are mediated by immediate metabolic and physiological adaptations. One of such adaptation is rapid adjustment in egg production, with flies directing excess energy towards egg production when shifted to a high diet, or away from reproduction in females shifted to low-caloric diet. However, lifelong female fecundity reveals no associated fitness cost due to CR when flies are shifted to a high-calorie diet. In view of high conservation of the beneficial effects of CR on physiology and lifespan in a wide variety of organisms, including humans, our findings could provide valuable insight into CR applications that could provide health benefits later in life.

2.
ACS Appl Mater Interfaces ; 16(24): 31294-31303, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38838350

RESUMO

Photodetector technology has evolved significantly over the years with the emergence of new active materials. However, there remain trade-offs between spectral sensitivity, operating energy, and, more recently, an ability to harbor additional features such as persistent photoconductivity and bidirectional photocurrents for new emerging application areas such as switchable light imaging and filter-less color discrimination. Here, we demonstrate a self-powered bidirectional photodetector based on molybdenum disulfide/gallium nitride (MoS2/GaN) epitaxial heterostructure. This fabricated detector exhibits self-powered functionality and achieves detection in two discrete wavelength bands: ultraviolet and visible. Notably, it attains a peak responsivity of 631 mAW-1 at a bias of 0V. The device's response to illumination at these two wavelengths is governed by distinct mechanisms, activated under applied bias conditions, thereby inducing a reversal in the polarity of the photocurrent. This work underscores the feasibility of self-powered and bidirectional photocurrent detection but also opens new vistas for technological advancements for future optoelectronic, neuromorphic, and sensing applications.

3.
bioRxiv ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38895426

RESUMO

In most complex nervous systems there is a clear anatomical separation between the nerve cord, which contains most of the final motor outputs necessary for behaviour, and the brain. In insects, the neck connective is both a physical and information bottleneck connecting the brain and the ventral nerve cord (VNC, spinal cord analogue) and comprises diverse populations of descending (DN), ascending (AN) and sensory ascending neurons, which are crucial for sensorimotor signalling and control. Integrating three separate EM datasets, we now provide a complete connectomic description of the ascending and descending neurons of the female nervous system of Drosophila and compare them with neurons of the male nerve cord. Proofread neuronal reconstructions have been matched across hemispheres, datasets and sexes. Crucially, we have also matched 51% of DN cell types to light level data defining specific driver lines as well as classifying all ascending populations. We use these results to reveal the general architecture, tracts, neuropil innervation and connectivity of neck connective neurons. We observe connected chains of descending and ascending neurons spanning the neck, which may subserve motor sequences. We provide a complete description of sexually dimorphic DN and AN populations, with detailed analysis of circuits implicated in sex-related behaviours, including female ovipositor extrusion (DNp13), male courtship (DNa12/aSP22) and song production (AN hemilineage 08B). Our work represents the first EM-level circuit analyses spanning the entire central nervous system of an adult animal.

5.
Front Aging ; 5: 1376086, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665228

RESUMO

Background: Little is known about the prevalence of cellular senescence among immune cells (i.e., immune cells expressing senescence markers, iSCs) nor is there a gold-standard to efficiently measure iSCs. Major depressive disorder (MDD) in older adults has been associated with many hallmarks of senescence in whole blood, leukocytes, and plasma, supporting a strong connection between iSCs and MDD. Here, we investigated the prevalence and phenotype of iSCs in older adults with MDD. Using a single-cell phenotypic approach, circulating immune cells were examined for iSC biomarkers and their relationship to depression and inflammation. Results: PBMCs from older adults with MDD (aged 69.75 ± 5.23 years) and healthy controls (aged 71.25 ± 8.8 years) were examined for immune subset distribution and senescence biomarkers (i.e., lack of proliferation, senescence-associated heterochromatin foci (SAHF), and DNA damage). Dual-expression of SAHF and DNA damage was categorized by low, intermediate, and high expression. A significant increase in the number of high expressing total PBMCs (p = 0.01), monocytes (p = 0.008), a trending increase in the number of high expressing CD4 T cells (p = 0.06) was observed overall in those with MDD. There was also a significantly lower proportion of intermediate expressing cells in monocytes and CD4 T cells in MDD (p = 0.01 and p = 0.05, respectively). Correlation analysis revealed associations between iSCs and mRNA expression of factors related to SASP and immune cell function. Conclusion: MDD is associated with increased senescent cell biomarkers in immune cell populations delineated by distinct levels of SAHF and DNA damage. Inflammatory markers might serve as potent indicators of iSC burden in MDD.

6.
Adv Mater ; 36(24): e2311103, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38489817

RESUMO

ß-Peptides have great potential as novel biomaterials and therapeutic agents, due to their unique ability to self-assemble into low dimensional nanostructures, and their resistance to enzymatic degradation in vivo. However, the self-assembly mechanisms of ß-peptides, which possess increased flexibility due to the extra backbone methylene groups present within the constituent ß-amino acids, are not well understood due to inherent difficulties of observing their bottom-up growth pathway experimentally. A computational approach is presented for the bottom-up modelling of the self-assembled lipidated ß3-peptides, from monomers, to oligomers, to supramolecular low-dimensional nanostructures, in all-atom detail. The approach is applied to elucidate the self-assembly mechanisms of recently discovered, distinct structural morphologies of low dimensional nanomaterials, assembled from lipidated ß3-peptide monomers. The resultant structures of the nanobelts and the twisted fibrils are stable throughout subsequent unrestrained all-atom molecular dynamics simulations, and these assemblies display good agreement with the structural features obtained from X-ray fiber diffraction and atomic force microscopy data. This is the first reported, fully-atomistic model of a lipidated ß3-peptide-based nanomaterial, and the computational approach developed here, in combination with experimental fiber diffraction analysis and atomic force microscopy, will be useful in elucidating the atomic scale structure of self-assembled peptide-based and other supramolecular nanomaterials.


Assuntos
Simulação de Dinâmica Molecular , Nanoestruturas , Peptídeos , Nanoestruturas/química , Peptídeos/química , Lipídeos/química , Microscopia de Força Atômica
7.
Viruses ; 16(3)2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-38543844

RESUMO

The emergence of new virus variants, including the Omicron variant (B.1.1.529) of SARS-CoV-2, can lead to reduced vaccine effectiveness (VE) and the need for new vaccines or vaccine doses if the extent of immune evasion is severe. Neutralizing antibody titers have been shown to be a correlate of protection for SARS-CoV-2 and other pathogens, and could be used to quickly estimate vaccine effectiveness for new variants. However, no model currently exists to provide precise VE estimates for a new variant against severe disease for SARS-CoV-2 using robust datasets from several populations. We developed predictive models for VE against COVID-19 symptomatic disease and hospitalization across a 54-fold range of mean neutralizing antibody titers. For two mRNA vaccines (mRNA-1273, BNT162b2), models fit without Omicron data predicted that infection with the BA.1 Omicron variant increased the risk of hospitalization 2.8-4.4-fold and increased the risk of symptomatic disease 1.7-4.2-fold compared to the Delta variant. Out-of-sample validation showed that model predictions were accurate; all predictions were within 10% of observed VE estimates and fell within the model prediction intervals. Predictive models using neutralizing antibody titers can provide rapid VE estimates, which can inform vaccine booster timing, vaccine design, and vaccine selection for new virus variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Eficácia de Vacinas , COVID-19/prevenção & controle , Vacina BNT162 , Hospitalização , Anticorpos Neutralizantes , Anticorpos Antivirais
8.
PLoS Biol ; 22(1): e3002463, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38289907

RESUMO

The emergence of successive Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) during 2020 to 2022, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics-such as varying levels of immunity-can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform Coronavirus Disease 2019 (COVID-19) planning and response and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both interindividual variation in Ct values and complex host characteristics-such as vaccination status, exposure history, and age-we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least 5 prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs. Trial Registration: The Legacy study is a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening for SARS-CoV-2 at University College London Hospitals or at the Francis Crick Institute (NCT04750356) (22,23). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469). The Legacy study was approved by London Camden and Kings Cross Health Research Authority Research and Ethics committee (IRAS number 286469) and is sponsored by University College London Hospitals. Written consent was given by all participants.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , SARS-CoV-2/genética , Teorema de Bayes , COVID-19/epidemiologia , Estudos Prospectivos
9.
ACS Appl Mater Interfaces ; 15(50): 58613-58622, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38051757

RESUMO

The resistive switching response of two terminal metal/oxide/metal devices depends on the stoichiometry of the oxide film, and this is commonly controlled by using a reactive metal electrode to reduce the oxide layer. Here, we investigate compositional and structural changes induced in Nb/Nb2O5 bilayers by thermal annealing at temperatures in the range of 573-973 K and its effect on the volatile threshold switching characteristics of Nb/Nb2O5/Pt devices. Changes in the stoichiometry of the Nb and Nb2O5 films are determined by Rutherford backscattering spectrometry and energy-dispersive X-ray (EDX) mapping of sample cross sections, while the structure of the films is determined by X-ray diffraction, Raman spectroscopy, and transmission electron microscopy (TEM). Such analysis shows that the composition of the Nb and Nb2O5 layers is homogenized by interdiffusion at temperatures less than the crystallization temperature (i.e., >773 K) but that this effectively ceases once the films crystallize. This is explained by comparison with the predictions of a simple diffusion model which shows that the compositional changes are dominated by oxygen diffusion in the amorphous oxide, which is much faster than that in the crystalline phases. We further show that these compositional and structural changes have a significant effect on the electroforming and threshold switching characteristics of the devices, the most significant being a marked increase in their reliability and endurance after crystallization of the oxide films. Finally, we examine the effect of annealing on the quasistatic negative differential resistance characteristics and oscillator dynamics of devices and use a lumped element model to show that this is dominated by changes in the device capacitance resulting from interdiffusion.

10.
Anal Chim Acta ; 1279: 341787, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37827635

RESUMO

Polydimethyl glutarimide (PMGI) layers with sub-micron thicknesses have been modified in a 2.5 kV Ar plasma immersion ion implantation (PIII) process to introduce free radical covalent binding sites. The surface roughness of the PMGI increased after the PIII treatment but no through-layer defects were observed. When applied to the treated PMGI, horseradish peroxidase (HRP) enzyme remained bound to the surface after extended immersion in sodium dodecyl sulfate solution (SDS). Hence, covalent binding between the activated surface and enzyme was confirmed. This covalent binding was achieved up to 24-h after the PIII process. The treated PMGI was then incorporated as a gate dielectric layer within a lateral three-terminal electrolyte-gated device. The device output characteristics resembled those of post-synaptic outputs; as successive (pre-synaptic) voltage pulses were applied to the gate, paired pulse depression and spike rate dependent plasticity were observed in the source-drain (post-synaptic) current. These characteristics were altered by the presence of HRP immobilised on the plasma-modified PMGI gate dielectric layer thus providing readout detection. These results and preliminary device characteristics show the potential for the plasma functionalized PMGI as a sensitive and reproducible biosensing technology.


Assuntos
Piperidonas , Dodecilsulfato de Sódio , Enzimas Imobilizadas/química , Íons , Peroxidase do Rábano Silvestre/química
11.
Phys Rev Lett ; 131(13): 133401, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37832021

RESUMO

We report on the design of a Hamiltonian ratchet exploiting periodically at rest integrable trajectories in the phase space of a modulated periodic potential, leading to the linear nondiffusive transport of particles. Using Bose-Einstein condensates in a modulated one-dimensional optical lattice, we make the first observations of this spatial ratchet, which provides way to coherently transport matter waves with possible applications in quantum technologies. In the semiclassical regime, the quantum transport strongly depends on the effective Planck constant due to Floquet state mixing. We also demonstrate the interest of quantum optimal control for efficient initial state preparation into the transporting Floquet states to enhance the transport periodicity.

12.
medRxiv ; 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37292842

RESUMO

The emergence of successive SARS-CoV-2 variants of concern (VOC) during 2020-22, each exhibiting increased epidemic growth relative to earlier circulating variants, has created a need to understand the drivers of such growth. However, both pathogen biology and changing host characteristics - such as varying levels of immunity - can combine to influence replication and transmission of SARS-CoV-2 within and between hosts. Disentangling the role of variant and host in individual-level viral shedding of VOCs is essential to inform COVID-19 planning and response, and interpret past epidemic trends. Using data from a prospective observational cohort study of healthy adult volunteers undergoing weekly occupational health PCR screening, we developed a Bayesian hierarchical model to reconstruct individual-level viral kinetics and estimate how different factors shaped viral dynamics, measured by PCR cycle threshold (Ct) values over time. Jointly accounting for both inter-individual variation in Ct values and complex host characteristics - such as vaccination status, exposure history and age - we found that age and number of prior exposures had a strong influence on peak viral replication. Older individuals and those who had at least five prior antigen exposures to vaccination and/or infection typically had much lower levels of shedding. Moreover, we found evidence of a correlation between the speed of early shedding and duration of incubation period when comparing different VOCs and age groups. Our findings illustrate the value of linking information on participant characteristics, symptom profile and infecting variant with prospective PCR sampling, and the importance of accounting for increasingly complex population exposure landscapes when analysing the viral kinetics of VOCs.

13.
Cell ; 186(12): 2556-2573.e22, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37236194

RESUMO

In Drosophila, a dedicated olfactory channel senses a male pheromone, cis-vaccenyl acetate (cVA), promoting female courtship while repelling males. Here, we show that separate cVA-processing streams extract qualitative and positional information. cVA sensory neurons respond to concentration differences in a 5-mm range around a male. Second-order projection neurons encode the angular position of a male by detecting inter-antennal differences in cVA concentration, which are amplified through contralateral inhibition. At the third circuit layer, we identify 47 cell types with diverse input-output connectivity. One population responds tonically to male flies, a second is tuned to olfactory looming, while a third integrates cVA and taste to coincidentally promote female mating. The separation of olfactory features resembles the mammalian what and where visual streams; together with multisensory integration, this enables behavioral responses appropriate to specific ethological contexts.


Assuntos
Proteínas de Drosophila , Receptores Odorantes , Animais , Feminino , Masculino , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Comportamento Sexual Animal/fisiologia , Receptores Odorantes/metabolismo , Feromônios/metabolismo , Olfato/fisiologia , Drosophila/metabolismo , Mamíferos/metabolismo
14.
ACS Appl Bio Mater ; 6(3): 1054-1070, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36880728

RESUMO

Despite recent advances in the development of orthopedic devices, implant-related failures that occur as a result of poor osseointegration and nosocomial infection are frequent. In this study, we developed a multiscale titanium (Ti) surface topography that promotes both osteogenic and mechano-bactericidal activity using a simple two-step fabrication approach. The response of MG-63 osteoblast-like cells and antibacterial activity toward Pseudomonas aeruginosa and Staphylococcus aureus bacteria was compared for two distinct micronanoarchitectures of differing surface roughness created by acid etching, using either hydrochloric acid (HCl) or sulfuric acid (H2SO4), followed by hydrothermal treatment, henceforth referred to as either MN-HCl or MN-H2SO4. The MN-HCl surfaces were characterized by an average surface microroughness (Sa) of 0.8 ± 0.1 µm covered by blade-like nanosheets of 10 ± 2.1 nm thickness, whereas the MN-H2SO4 surfaces exhibited a greater Sa value of 5.8 ± 0.6 µm, with a network of nanosheets of 20 ± 2.6 nm thickness. Both micronanostructured surfaces promoted enhanced MG-63 attachment and differentiation; however, cell proliferation was only significantly increased on MN-HCl surfaces. In addition, the MN-HCl surface exhibited increased levels of bactericidal activity, with only 0.6% of the P. aeruginosa cells and approximately 5% S. aureus cells remaining viable after 24 h when compared to control surfaces. Thus, we propose the modulation of surface roughness and architecture on the micro- and nanoscale to achieve efficient manipulation of osteogenic cell response combined with mechanical antibacterial activity. The outcomes of this study provide significant insight into the further development of advanced multifunctional orthopedic implant surfaces.


Assuntos
Staphylococcus aureus , Titânio , Titânio/farmacologia , Propriedades de Superfície , Osteogênese , Antibacterianos/farmacologia
15.
Nano Lett ; 23(7): 2974-2980, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36975136

RESUMO

Herein we report the synthesis and characterization of spinel copper gallate (CuGa2O4) nanocrystals (NCs) with an average size of 3.7 nm via a heat-up colloidal reaction. CuGa2O4 NCs have a band gap of ∼2.5 eV and marked p-type character, in agreement with ab initio simulations. These novel NCs are demonstrated to be photoactive, generating a clear and reproducible photocurrent under blue light irradiation when deposited as thin films. Crucially, the ability to adjust the Cu/Ga ratio within the NCs, and the effect of this on the optical and electronic properties of the NCs, was also demonstrated. These results position CuGa2O4 NCs as a novel material for optoelectronic applications, including hole transport and light harvesting.

16.
Small Methods ; 7(6): e2201170, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36855216

RESUMO

A way through which the properties of metal-organic frameworks (MOFs) can be tuned is by engineering defects into the crystal structure. Given its intrinsic stability and rigidity, however, it is difficult to introduce defects into zeolitic imidazolate frameworks (ZIFs)-and ZIF-8, in particular-without compromising crystal integrity. In this work, it is shown that the acoustic radiation pressure as well as the hydrodynamic stresses arising from the oscillatory flow generated by coupling high frequency (MHz-order) hybrid surface and bulk acoustic waves into a suspension of ZIF-8 crystals in a liquid pressure transmitting medium is capable of driving permanent structural changes in their crystal lattice structure. Over time, the enhancement in the diffusive transport of guest molecules into the material's pores as a consequence is shown to lead to expansion of the pore framework, and subsequently, the creation of dangling-linker and missing-linker defects, therefore offering the possibility of tuning the type and extent of defects engineered into the MOF through the acoustic exposure time. Additionally, the practical utility of the technology is demonstrated for one-pot, simultaneous solvent-assisted ligand exchange under ambient conditions, for sub-micron-dimension ZIF-8 crystals and relatively large ligands-more specifically 2-aminobenzimidazole-without compromising the framework porosity or overall crystal structure.

17.
Xenobiotica ; 53(2): 93-105, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36794569

RESUMO

The metabolism and pharmacokinetics of fasiglifam (TAK-875, 2-[(3S)-6-[[3-[2,6-dimethyl-4-(3-methylsulfonylpropoxy)phenyl]phenyl]methoxy]-2,3-dihydro-1-benzofuran-3-yl]acetic acid), a selective free fatty acid receptor 1 (FFAR1)/GPR40 agonist, were studied following intravenous (5 mg/kg) and oral administration (10 and 50 mg/kg) to male and female Sprague Dawley rats.Following intravenous dosing at 5 mg/kg, peak observed plasma concentrations of 8.8/9.2 µg/ml were seen in male and female rats respectively.Following oral dosing, peak plasma concentrations at 1 h of ca. 12.4/12.9 µg/ml for 10 mg/kg and 76.2/83.7 µg/ml for 50 mg/kg doses were obtained for male and female rats respectively. Drug concentrations then declined in the plasma of both sexes with t1/2's of 12.4 (male) and 11.2 h (female). Oral bioavailability was estimated to be 85-120% in males and females at both dose levels.Urinary excretion was low, but in a significant sex-related difference, female rats eliminated ca. 10-fold more drug-related material by this route.Fasiglifam was the principal drug-related compound in plasma, with 15 metabolites, including the acyl glucuronide, also detected. In addition to previously identified metabolites, a novel biotransformation, that produced a side-chain shortened metabolite via elimination of CH2 from the acetyl side chain was noted with implications for drug toxicity.


Assuntos
Receptores Acoplados a Proteínas G , Sulfonas , Ratos , Masculino , Feminino , Animais , Ratos Sprague-Dawley , Administração Intravenosa , Receptores Acoplados a Proteínas G/agonistas , Administração Oral , Injeções Intravenosas
18.
Sci Rep ; 13(1): 493, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627399

RESUMO

Faecal or biopsy samples are frequently used to analyse the gut microbiota, but issues remain with the provision and collection of such samples. Rectal swabs are widely-utilised in clinical practice and previous data demonstrate their potential role in microbiota analyses; however, studies to date have been heterogenous, and there are a particular lack of data concerning the utility of swabs for the analysis of the microbiota's functionality and metabolome. We compared paired stool and rectal swab samples from healthy individuals to investigate whether rectal swabs are a reliable proxy for faecal sampling. There were no significant differences in key alpha and beta diversity measures between swab and faecal samples, and inter-subject variability was preserved. Additionally, no significant differences were demonstrated in abundance of major annotated phyla. Inferred gut functionality using Tax4Fun2 showed excellent correlation between the two sampling techniques (Pearson's coefficient r = 0.9217, P < 0.0001). Proton nuclear magnetic resonance (1H NMR) spectroscopy enabled the detection of 20 metabolites, with overall excellent correlation identified between rectal swab and faecal samples for levels all metabolites collectively, although more variable degrees of association between swab and stool for levels of individual metabolites. These data support the utility of rectal swabs in both compositional and functional analyses of the gut microbiota.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Fezes , Manejo de Espécimes/métodos , RNA Ribossômico 16S
19.
Nat Commun ; 14(1): 3, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36596770

RESUMO

MXenes hold immense potential given their superior electrical properties. The practical adoption of these promising materials is, however, severely constrained by their oxidative susceptibility, leading to significant performance deterioration and lifespan limitations. Attempts to preserve MXenes have been limited, and it has not been possible thus far to reverse the material's performance. In this work, we show that subjecting oxidized micron or nanometer thickness dry MXene films-even those constructed from nanometer-order solution-dispersed oxidized flakes-to just one minute of 10 MHz nanoscale electromechanical vibration leads to considerable removal of its surface oxide layer, whilst preserving its structure and characteristics. Importantly, electrochemical performance is recovered close to that of their original state: the pseudocapacitance, which decreased by almost 50% due to its oxidation, reverses to approximately 98% of its original value, with good capacitance retention ( ≈ 93%) following 10,000 charge-discharge cycles at 10 A g-1. These promising results allude to the exciting possibility for rejuvenating the material for reuse, therefore offering a more economical and sustainable route that improves its potential for practical translation.

20.
Virus Genes ; 59(1): 36-44, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36266496

RESUMO

Dengue is an endemic arboviral disease with continuous transmission in Indonesia for more than five decades. A recent outbreak in Jember, East Java province, demonstrated the predominance of DENV-4, a serotype known for its low global spread and limited transmission. While epidemiological factors such as new serotype introduction and lacking herd immunity may explain its predominance, viral factors may also contribute. Using next-generation sequencing, we generated 13 representative complete genomes of DENV-4 responsible for the outbreak. Phylogenetic and evolutionary analyses on complete genomes were performed to understand the spatial and temporal dynamics of the viruses. Further analyses were done to study amino acid variations in DENV genes, as well as the potential events of recombination and selection pressure within the genomes. We revealed the DENV-4 genetic factors that may lead to its predominance in the 2019 Jember dengue outbreak. A combination of selection pressure and mutational genetic changes may contribute to the DENV-4 predominance in East Java, Indonesia. The possible intra-serotype recombination events involving the non-structural protein 5 (NS5) gene were also observed. Altogether, these genetic factors may act as additional factors behind the complex dengue outbreak mechanism.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/genética , Dengue/epidemiologia , Indonésia/epidemiologia , Filogenia , Genótipo , Sorogrupo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA