Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(4): 283-294, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38207120

RESUMO

Bronchopulmonary dysplasia (BPD), the chronic lung disease of prematurity, is characterized by impaired lung development with sustained functional abnormalities due to alterations of airways and the distal lung. Although clinical studies have shown striking associations between antenatal stress and BPD, little is known about the underlying pathogenetic mechanisms. Whether dysanapsis, the concept of discordant growth of the airways and parenchyma, contributes to late respiratory disease as a result of antenatal stress is unknown. We hypothesized that antenatal endotoxin (ETX) impairs juvenile lung function as a result of altered central airway and distal lung structure, suggesting the presence of dysanapsis in this preclinical BPD model. Fetal rats were exposed to intraamniotic ETX (10 µg) or saline solution (control) 2 days before term. We performed extensive structural and functional evaluation of the proximal airways and distal lung in 2-week-old rats. Distal lung structure was quantified by stereology. Conducting airway diameters were measured using micro-computed tomography. Lung function was assessed during invasive ventilation to quantify baseline mechanics, response to methacholine challenge, and spirometry. ETX-exposed pups exhibited distal lung simplification, decreased alveolar surface area, and decreased parenchyma-airway attachments. ETX-exposed pups exhibited decreased tracheal and second- and third-generation airway diameters. ETX increased respiratory system resistance and decreased lung compliance at baseline. Only Newtonian resistance, specific to large airways, exhibited increased methacholine reactivity in ETX-exposed pups compared with controls. ETX-exposed pups had a decreased ratio of FEV in 0.1 second to FVC and a normal FEV in 0.1 second, paralleling the clinical definition of dysanapsis. Antenatal ETX causes abnormalities of the central airways and distal lung growth, suggesting that dysanapsis contributes to abnormal lung function in juvenile rats.


Assuntos
Displasia Broncopulmonar , Ratos , Animais , Feminino , Gravidez , Displasia Broncopulmonar/patologia , Endotoxinas , Cloreto de Metacolina/farmacologia , Microtomografia por Raio-X , Ratos Sprague-Dawley , Animais Recém-Nascidos , Pulmão/patologia
2.
Genes (Basel) ; 14(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37761959

RESUMO

(1) Background: We sought to investigate the baseline lung and heart biology of the Dp16 mouse model of Down syndrome (DS) as a prelude to the investigation of recurrent respiratory tract infection. (2) Methods: In controls vs. Dp16 mice, we compared peripheral blood cell and plasma analytes. We examined baseline gene expression in lungs and hearts for key parameters related to susceptibility of lung infection. We investigated lung and heart protein expression and performed lung morphometry. Finally, and for the first time each in a model of DS, we performed pulmonary function testing and a hemodynamic assessment of cardiac function. (3) Results: Dp16 mice circulate unique blood plasma cytokines and chemokines. Dp16 mouse lungs over-express the mRNA of triplicated genes, but not necessarily corresponding proteins. We found a sex-specific decrease in the protein expression of interferon α receptors, yet an increased signal transducer and activator of transcription (STAT)-3 and phospho-STAT3. Platelet-activating factor receptor protein was not elevated in Dp16 mice. The lungs of Dp16 mice showed increased stiffness and mean linear intercept and contained bronchus-associated lymphoid tissue. The heart ventricles of Dp16 mice displayed hypotonicity. Finally, Dp16 mice required more ketamine to achieve an anesthetized state. (4) Conclusions: The Dp16 mouse model of DS displays key aspects of lung heart biology akin to people with DS. As such, it has the potential to be an extremely valuable model of recurrent severe respiratory tract infection in DS.


Assuntos
Síndrome de Down , Infecções Respiratórias , Humanos , Masculino , Feminino , Camundongos , Animais , Síndrome de Down/metabolismo , Modelos Animais de Doenças , Pulmão/metabolismo , Biologia
3.
Front Physiol ; 14: 1217183, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37565138

RESUMO

Acute respiratory distress syndrome (ARDS) and acute lung injury have a diverse spectrum of causative factors including sepsis, aspiration of gastric contents, and near drowning. Clinical management of severe lung injury typically includes mechanical ventilation to maintain gas exchange which can lead to ventilator-induced lung injury (VILI). The cause of respiratory failure is acknowledged to affect the degree of lung inflammation, changes in lung structure, and the mechanical function of the injured lung. However, these differential effects of injury and the role of etiology in the structure-function relationship are not fully understood. To address this knowledge gap we caused lung injury with intratracheal hydrochloric acid (HCL) or endotoxin (LPS) 2 days prior to ventilation or with an injurious lavage (LAV) immediately prior to ventilation. These injury groups were then ventilated with high inspiratory pressures and positive end expiratory pressure (PEEP) = 0 cmH2O to cause VILI and model the clinical course of ARDS followed by supportive ventilation. The effects of injury were quantified using invasive lung function measurements recorded during PEEP ladders where the end-expiratory pressure was increased from 0 to 15 cm H2O and decreased back to 0 cmH2O in steps of 3 cmH2O. Design-based stereology was used to quantify the parenchymal structure of lungs air-inflated to 2, 5, and 10 cmH2O. Pro-inflammatory gene expression was measured with real-time quantitative polymerase chain reaction and alveolocapillary leak was estimated by measuring bronchoalveolar lavage protein content. The LAV group had small, stiff lungs that were recruitable at higher pressures, but did not demonstrate substantial inflammation. The LPS group showed septal swelling and high pro-inflammatory gene expression that was exacerbated by VILI. Despite widespread alveolar collapse, elastance in LPS was only modestly elevated above healthy mice (CTL) and there was no evidence of recruitability. The HCL group showed increased elastance and some recruitability, although to a lesser degree than LAV. Pro-inflammatory gene expression was elevated, but less than LPS, and the airspace dimensions were reduced. Taken together, those data highlight how different modes of injury, in combination with a 2nd hit of VILI, yield markedly different effects.

4.
Nanomedicine ; 50: 102679, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37116556

RESUMO

Acute respiratory distress syndrome (ARDS) has high mortality (~40 %) and requires the lifesaving intervention of mechanical ventilation. A variety of systemic inflammatory insults can progress to ARDS, and the inflamed and injured lung is susceptible to ventilator-induced lung injury (VILI). Strategies to mitigate the inflammatory response while restoring pulmonary function are limited, thus we sought to determine if treatment with CNP-miR146a, a conjugate of novel free radical scavenging cerium oxide nanoparticles (CNP) to the anti-inflammatory microRNA (miR)-146a, would protect murine lungs from acute lung injury (ALI) induced with intratracheal endotoxin and subsequent VILI. Lung injury severity and treatment efficacy were evaluated via lung mechanical function, relative gene expression of inflammatory biomarkers, and lung morphometry (stereology). CNP-miR146a reduced the severity of ALI and slowed the progression of VILI, evidenced by improvements in inflammatory biomarkers, atelectasis, gas volumes in the parenchymal airspaces, and the stiffness of the pulmonary system.


Assuntos
Lesão Pulmonar Aguda , Síndrome do Desconforto Respiratório , Lesão Pulmonar Induzida por Ventilação Mecânica , Humanos , Camundongos , Animais , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/tratamento farmacológico , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...