Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bio Protoc ; 14(2): e4919, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38268973

RESUMO

Human skin reconstruction on immune-deficient mice has become indispensable for in vivo studies performed in basic research and translational laboratories. Further advancements in making sustainable, prolonged skin equivalents to study new therapeutic interventions rely on reproducible models utilizing patient-derived cells and natural three-dimensional culture conditions mimicking the structure of living skin. Here, we present a novel step-by-step protocol for grafting human skin cells onto immunocompromised mice that requires low starting cell numbers, which is essential when primary patient cells are limited for modeling skin conditions. The core elements of our method are the sequential transplantation of fibroblasts followed by keratinocytes seeded into a fibrin-based hydrogel in a silicone chamber. We optimized the fibrin gel formulation, timing for gel polymerization in vivo, cell culture conditions, and seeding density to make a robust and efficient grafting protocol. Using this approach, we can successfully engraft as few as 1.0 × 106 fresh and 2.0 × 106 frozen-then-thawed keratinocytes per 1.4 cm2 of the wound area. Additionally, it was concluded that a successful layer-by-layer engraftment of skin cells in vivo could be obtained without labor-intensive and costly methodologies such as bioprinting or engineering complex skin equivalents. Key features • Expands upon the conventional skin chamber assay method (Wang et al., 2000) to generate high-quality skin grafts using a minimal number of cultured skin cells. • The proposed approach allows the use of frozen-then-thawed keratinocytes and fibroblasts in surgical procedures. • This system holds promise for evaluating the functionality of skin cells derived from induced pluripotent stem cells and replicating various skin phenotypes. • The entire process, from thawing skin cells to establishing the graft, requires 54 days. Graphical overview.

2.
bioRxiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36909618

RESUMO

Background: Gene editing in induced pluripotent stem (iPS) cells has been hailed to enable new cell therapies for various monogenetic diseases including dystrophic epidermolysis bullosa (DEB). However, manufacturing, efficacy and safety roadblocks have limited the development of genetically corrected, autologous iPS cell-based therapies. Methods: We developed Dystrophic Epidermolysis Bullosa Cell Therapy (DEBCT), a new generation GMP-compatible (cGMP), reproducible, and scalable platform to produce autologous clinical-grade iPS cell-derived organotypic induced skin composite (iSC) grafts to treat incurable wounds of patients lacking type VII collagen (C7). DEBCT uses a combined high-efficiency reprogramming and CRISPR-based genetic correction single step to generate genome scar-free, COL7A1 corrected clonal iPS cells from primary patient fibroblasts. Validated iPS cells are converted into epidermal, dermal and melanocyte progenitors with a novel 2D organoid differentiation protocol, followed by CD49f enrichment and expansion to minimize maturation heterogeneity. iSC product characterization by single cell transcriptomics was followed by mouse xenografting for disease correcting activity at 1 month and toxicology analysis at 1-6 months. Culture-acquired mutations, potential CRISPR-off targets, and cancer-driver variants were evaluated by targeted and whole genome sequencing. Findings: iPS cell-derived iSC grafts were reproducibly generated from four recessive DEB patients with different pathogenic mutations. Organotypic iSC grafts onto immune-compromised mice developed into stable stratified skin with functional C7 restoration. Single cell transcriptomic characterization of iSCs revealed prominent holoclone stem cell signatures in keratinocytes and the recently described Gibbin-dependent signature in dermal fibroblasts. The latter correlated with enhanced graftability. Multiple orthogonal sequencing and subsequent computational approaches identified random and non-oncogenic mutations introduced by the manufacturing process. Toxicology revealed no detectable tumors after 3-6 months in DEBCT-treated mice. Interpretation: DEBCT successfully overcomes previous roadblocks and represents a robust, scalable, and safe cGMP manufacturing platform for production of a CRISPR-corrected autologous organotypic skin graft to heal DEB patient wounds.

3.
Cell Death Differ ; 30(4): 952-965, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36681780

RESUMO

The p53 transcription factor is a master regulator of cellular responses to stress that is commonly inactivated in diverse cancer types. Despite decades of research, the mechanisms by which p53 impedes tumorigenesis across vastly different cellular contexts requires further investigation. The bulk of research has been completed using in vitro studies of cancer cell lines or in vivo studies in mouse models, but much less is known about p53 action in diverse non-transformed human tissues. Here, we investigated how different cellular states modify the p53 transcriptional program in human cells through a combination of computational analyses of publicly available large-scale datasets and in vitro studies using an isogenic system consisting of induced pluripotent stem cells (iPSCs) and two derived lineages. Analysis of publicly available mRNA expression and genetic dependency data demonstrated wide variation in terms of expression and function of a core p53 transcriptional program across various tissues and lineages. To monitor the impact of cell differentiation on the p53 transcriptome within an isogenic cell culture system, we activated p53 by pharmacological inhibition of its negative regulator MDM2. Using cell phenotyping assays and genome wide transcriptome analyses, we demonstrated that cell differentiation confines and modifies the p53 transcriptional network in a lineage-specific fashion. Although hundreds of p53 target genes are transactivated in iPSCs, only a small fraction is transactivated in each of the differentiated lineages. Mechanistic studies using small molecule inhibitors and genetic knockdowns revealed the presence of two major regulatory mechanisms contributing to this massive heterogeneity across cellular states: gene silencing by epigenetic regulatory complexes and constitutive transactivation by lineage-specific transcription factors. Altogether, these results illuminate the impact of cell differentiation on the p53 program, thus advancing our understanding of how this tumor suppressor functions in different contexts.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Camundongos , Animais , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ativação Transcricional/genética , Fatores de Transcrição/metabolismo , Diferenciação Celular/genética , Neoplasias/genética , Inativação Gênica
4.
Methods Mol Biol ; 2549: 153-167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33772462

RESUMO

Differentiating human induced pluripotent stem cells (iPSCs) into multipotent mesenchymal stem/stromal cells (MSCs) offers a renewable source of therapeutically invaluable cells. However, the process of MSC derivation from iPSCs suffers from an undesirably low efficiency. In this chapter, we present an optimized procedure to produce MSCs from human iPSCs with a high efficiency. The protocol depends on the generation of embryoid bodies (EBs) and requires the treatment of EBs with transforming growth factor beta 1 (TGF-ß1). The resulting MSCs can be purified based on the expression of CD73, CD105, and CD90 markers and expanded for multiple passages without losing their characteristics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Diferenciação Celular , Corpos Embrioides/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Antígenos Thy-1/metabolismo
5.
Methods Mol Biol ; 2549: 169-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33755906

RESUMO

Endothelial cells (ECs) are important components of the circulatory system. These cells can be used for in vitro modeling of cardiovascular diseases and in regenerative medicine to promote vascularization of engineered tissue constructs. However, low proliferative capacity and patient-to-patient variability limit the use of primary ECs in the clinic and disease modeling. ECs differentiated from human induced pluripotent stem cells (iPSCs) can serve as a viable alternative to primary ECs for these applications. This is because human iPSCs can proliferate indefinitely and have the potential to differentiate into a variety of somatic cell lines, providing a renewable source of patient-specific cells. Here, we present an optimized, highly reproducible method for the differentiation of human iPSCs toward vascular ECs. The protocol relies on the activation of the WNT signaling pathway and the use of growth factors and small molecules. The resulting iPSC-derived ECs can be cultured for multiple passages without losing their functionality and are suitable for both in vitro and in vivo studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Diferenciação Celular/fisiologia , Linhagem Celular , Células Endoteliais/metabolismo , Humanos , Medicina Regenerativa
6.
J Extracell Vesicles ; 10(13): e12165, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750957

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown. Here we demonstrate that under homeostatic conditions extracellular vesicles (EVs) secreted by retinal pigment epithelium (RPE) cells are enriched in proteins associated with mechanisms involved in AMD pathophysiology, including oxidative stress, immune response, inflammation, complement system and drusen composition. Furthermore, we provide first evidence that drusen-associated proteins are released as cargo of extracellular vesicles secreted by RPE cells in a polarised apical:basal mode. Notably, drusen-associated proteins exhibited distinctive directional secretion modes in homeostatic conditions and, differential modulation of this directional secretion in response to AMD stressors. These observations underpin the existence of a finely-tuned mechanism regulating directional apical:basal sorting and secretion of drusen-associated proteins via EVs, and its modulation in response to mechanisms involved in AMD pathophysiology. Collectively, our results strongly support an active role of RPE-derived EVs as a key source of drusen proteins and important contributors to drusen development and growth.


Assuntos
Polaridade Celular/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Degeneração Macular/complicações , Degeneração Macular/metabolismo , Proteínas/metabolismo , Drusas Retinianas/complicações , Drusas Retinianas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nicotina/farmacologia , Organoides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Secretoma/metabolismo
7.
Am J Med Genet A ; 185(11): 3390-3400, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34435747

RESUMO

Recessive dystrophic epidermolysis bullosa (RDEB) is a rare genodermatosis caused by mutations in the gene coding for type VII collagen (COL7A1). More than 800 different pathogenic mutations in COL7A1 have been described to date; however, the ancestral origins of many of these mutations have not been precisely identified. In this study, 32 RDEB patient samples from the Southwestern United States, Mexico, Chile, and Colombia carrying common mutations in the COL7A1 gene were investigated to determine the origins of these mutations and the extent to which shared ancestry contributes to disease prevalence. The results demonstrate both shared European and American origins of RDEB mutations in distinct populations in the Americas and suggest the influence of Sephardic ancestry in at least some RDEB mutations of European origins. Knowledge of ancestry and relatedness among RDEB patient populations will be crucial for the development of future clinical trials and the advancement of novel therapeutics.


Assuntos
Colágeno Tipo VII/genética , Epidermólise Bolhosa Distrófica/genética , Hispânico ou Latino/genética , Judeus/genética , Chile/epidemiologia , Colômbia/epidemiologia , Epidermólise Bolhosa Distrófica/epidemiologia , Feminino , Genes Recessivos/genética , Humanos , Masculino , México/epidemiologia , Fenótipo , Estados Unidos/epidemiologia
8.
Brain ; 144(8): 2499-2512, 2021 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-34028503

RESUMO

Solute carrier family 6 member 1 (SLC6A1) is abundantly expressed in the developing brain even before the CNS is formed. Its encoded GABA transporter 1 (GAT-1) is responsible for the reuptake of GABA into presynaptic neurons and glia, thereby modulating neurotransmission. GAT-1 is expressed globally in the brain, in both astrocytes and neurons. The GABA uptake function of GAT-1 in neurons cannot be compensated for by other GABA transporters, while the function in glia can be partially replaced by GABA transporter 3. Recently, many variants in SLC6A1 have been associated with a spectrum of epilepsy syndromes and neurodevelopmental disorders, including myoclonic atonic epilepsy, childhood absence epilepsy, autism, and intellectual disability, but the pathomechanisms associated with these phenotypes remain unclear. The presence of GAT-1 in both neurons and astrocytes further obscures the role of abnormal GAT-1 in the heterogeneous disease phenotype manifestations. Here we examine the impact on transporter trafficking and function of 22 SLC6A1 variants identified in patients with a broad spectrum of phenotypes. We also evaluate changes in protein expression and subcellular localization of the variant GAT-1 in various cell types, including neurons and astrocytes derived from human patient induced pluripotent stem cells. We found that a partial or complete loss-of-function represents a common disease mechanism, although the extent of GABA uptake reduction is variable. The reduced GABA uptake appears to be due to reduced cell surface expression of the variant transporter caused by variant protein misfolding, endoplasmic reticulum retention, and subsequent degradation. Although the extent of reduction of the total protein, surface protein, and the GABA uptake level of the variant transporters is variable, the loss of GABA uptake function and endoplasmic reticulum retention is consistent across induced pluripotent stem cell-derived cell types, including astrocytes and neurons, for the surveyed variants. Interestingly, we did not find a clear correlation of GABA uptake function and the disease phenotypes, such as myoclonic atonic epilepsy versus developmental delay, in this study. Together, our study suggests that impaired transporter protein trafficking and surface expression are the major disease-associated mechanisms associated with pathogenic SLC6A1 variants. Our results resemble findings from pathogenic variants in other genes affecting the GABA pathway, such as GABAA receptors. This study provides critical insight into therapeutic developments for SLC6A1 variant-mediated disorders and implicates that boosting transporter function by either genetic or pharmacological approaches would be beneficial.


Assuntos
Astrócitos/metabolismo , Epilepsia/genética , Proteínas da Membrana Plasmática de Transporte de GABA/genética , Transtornos do Neurodesenvolvimento/genética , Neurônios/metabolismo , Bases de Dados Factuais , Epilepsia/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Humanos , Transtornos do Neurodesenvolvimento/metabolismo , Transporte Proteico/fisiologia , Ácido gama-Aminobutírico/metabolismo
9.
Methods Mol Biol ; 2155: 11-21, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32474864

RESUMO

The discovery of induced pluripotent stem cell (iPSC) technology has provided a versatile platform for basic science research and regenerative medicine. With the rise of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) systems and the ease at which they can be utilized for gene editing, creating genetically modified iPSCs has never been more advantageous for studying both organism development and potential clinical applications. However, to better understand the behavior and true therapeutic potential of iPSCs and iPSC-derived cells, a tool for labeling and monitoring these cells in vitro and in vivo is needed. Here, we describe a protocol that provides a straightforward method for introducing a stable, highly expressed fluorescent protein into iPSCs using the CRISPR/Cas9 system and a standardized donor vector. The approach involves the integration of the EGFP transgene into the transcriptionally active adeno-associated virus integration site 1 (AAVS1) locus through homology directed repair. The knockin of this transgene results in the generation of iPSC lines with constitutive expression of the EGFP protein that also persists in differentiated iPSCs. These EGFP-labeled iPSC lines are ideal for assessing iPSC differentiation in vitro and evaluating the distribution of iPSC-derived cells in vivo after transplantation into model animals.


Assuntos
Expressão Gênica , Genes Reporter , Engenharia Genética , Proteínas de Fluorescência Verde/genética , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Edição de Genes , Técnicas de Introdução de Genes , Marcação de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Humanos
10.
Methods Mol Biol ; 2117: 271-284, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31960386

RESUMO

Reprogramming a patient's somatic cells into induced pluripotent stem cells (iPSCs) holds great promise for disease modeling and the development of autologous cellular therapeutics. However, it remains challenging to consistently reprogram primary human cells, as they are frequently aged, diseased, or in low abundance. Here we present a modified highly efficient and clinically relevant RNA-based method for reprogramming disease-associated and other difficult-to-reprogram human primary fibroblast lines into iPSCs. We also describe optimizations that can be employed for consistent reprogramming of these difficult-to-reprogram cells. With the provided protocol, integration-free iPSC lines can be successfully generated from a small number of primary human fibroblasts in approximately 5-7 weeks.


Assuntos
Técnicas de Reprogramação Celular/métodos , Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Cultura Primária de Células/métodos , RNA/genética , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Reprogramação Celular , Humanos
11.
Methods Mol Biol ; 2109: 169-183, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31119714

RESUMO

Human skin equivalents composed of epidermal cells and fibroblasts are important for modeling human epidermal development, testing new therapeutics, and designing novel treatment strategies for human skin diseases. Here, we describe a procedure for the generation of an in vivo full-thickness human skin equivalent on an immunodeficient mouse using a grafting chamber system. The protocol involves mixing human epidermal cells and fibroblasts in a silicone grafting chamber that is surgically inserted onto the muscle fascia of a recipient immunodeficient mouse. Following the removal of the silicone chamber, the graft area is exposed to air to induce stratification of developing epidermis, resulting in the reconstitution of full-thickness human skin tissue on a live mouse. This grafting system provides a straightforward approach to study human skin diseases in an animal model and has been previously used to determine the ability of both mouse and human primary epidermal cells and cells derived from pluripotent stem cells to regenerate functional skin in vivo.


Assuntos
Fibroblastos/citologia , Queratinócitos/citologia , Transplante de Pele/métodos , Animais , Células Cultivadas , Humanos , Hospedeiro Imunocomprometido , Fígado/cirurgia , Camundongos , Camundongos Endogâmicos NOD , Modelos Animais , Cultura Primária de Células , Técnicas de Cultura de Tecidos
12.
Biomater Sci ; 7(12): 5388-5403, 2019 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-31626251

RESUMO

Human induced pluripotent stem cells (iPSCs) have emerged as a promising alternative to bone-marrow derived mesenchymal stem/stromal cells for cartilage tissue engineering. However, the effect of biochemical and mechanical cues on iPSC chondrogenesis remains understudied. This study evaluated chondrogenesis of induced pluripotent mesenchymal progenitor cells (iPS-MPs) encapsulated in a cartilage-mimetic hydrogel under different culture conditions: free swelling versus dynamic compressive loading and different growth factors (TGFß3 and/or BMP2). Human iPSCs were differentiated into iPS-MPs and chondrogenesis was evaluated by gene expression (qPCR) and protein expression (immunohistochemistry) after three weeks. In pellet culture, both TGFß3 and BMP2 were required to promote chondrogenesis. However, the hydrogel in growth factor-free conditions promoted chondrogenesis, but rapidly progressed to hypertrophy. Dynamic loading in growth factor-free conditions supported chondrogenesis, but delayed the transition to hypertrophy. Findings were similar with TGFß3, BMP2, and TGFß3 + BMP2. Dynamic loading with TGFß3, regardless of BMP2, was the only condition that promoted a stable chondrogenic phenotype (aggrecan + collagen II) accompanied by collagen X down-regulation. Positive TGFßRI expression with load-enhanced Smad2/3 signaling and low SMAD1/5/8 signaling was observed. In summary, this study reports a promising cartilage-mimetic hydrogel for iPS-MPs that when combined with appropriate biochemical and mechanical cues induces a stable chondrogenic phenotype.


Assuntos
Materiais Biomiméticos/farmacologia , Proteína Morfogenética Óssea 2/farmacologia , Condrogênese/efeitos dos fármacos , Hidrogéis/farmacologia , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Fenômenos Mecânicos , Fator de Crescimento Transformador beta/farmacologia , Fenômenos Biomecânicos , Materiais Biomiméticos/química , Cartilagem , Diferenciação Celular/efeitos dos fármacos , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Pessoa de Meia-Idade , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo
13.
J Invest Dermatol ; 139(8): 1634-1637, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31331444

RESUMO

Ex vivo gene therapy is a promising approach to treat devastating skin fragility diseases. March et al. and Takashima et al. report that programmable nucleases-TALENs and CRISPR/Cas9-can safely and efficiently correct genetic defects in cultured adult skin cells, paving the way for broader clinical applications of gene therapies in dermatology.


Assuntos
Sistemas CRISPR-Cas , Epidermólise Bolhosa Distrófica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Terapia Genética , Humanos , Nucleases dos Efetores Semelhantes a Ativadores de Transcrição
14.
15.
Adv Biosyst ; 3(10): e1900022, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-32648724

RESUMO

The extracellular matrix (ECM) controls keratinocyte proliferation, migration, and differentiation through ß-integrin signaling. Wound-healing research requires expanding cells in vitro while maintaining replicative capacity; however, early terminal differentiation under traditional culture conditions limits expansion. Here, a design of experiments approach identifies poly(ethylene glycol)-based hydrogel formulations with mechanical properties (elastic modulus, E = 20.9 ± 0.56 kPa) and bioactive peptide sequences that mimic the epidermal ECM. These hydrogels enable systematic investigation of the influence of cell-binding domains from fibronectin (RGDS), laminin (YIGSR), and collagen IV (HepIII) on keratinocyte stemness and ß1 integrin expression. Quantification of 14-day keratin protein expression shows four hydrogels improve stemness compared to standard techniques. Three hydrogels increase ß1 integrin expression, demonstrating a positive linear relationship between stemness and ß1 integrin expression. Multifactorial statistical analysis predicts an optimal peptide combination ([RGDS] = 0.67 mm, [YIGSR] = 0.13 mm, and [HepIII] = 0.02 mm) for maintaining stemness in vitro. Best-performing hydrogels exhibit no decrease in Ki-67-positive cells compared to standards (15% decrease, day 7 to 14; p < 0.05, Tukey Test). These data demonstrate that precisely designed hydrogel biomaterials direct integrin expression and promote proliferation, improving the regenerative capability of cultured keratinocytes for basic science and translational work.


Assuntos
Expressão Gênica/efeitos dos fármacos , Hidrogéis , Integrinas , Queratinócitos , Adulto , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Proteínas da Matriz Extracelular/química , Proteínas da Matriz Extracelular/metabolismo , Humanos , Hidrogéis/química , Hidrogéis/farmacologia , Integrinas/análise , Integrinas/genética , Integrinas/metabolismo , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Microscopia de Fluorescência , Peptídeos/química , Peptídeos/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos
16.
J Vis Exp ; (141)2018 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-30531717

RESUMO

Induced pluripotent stem cells (iPSCs) have proven to be a valuable tool to study human development and disease. Further advancing iPSCs as a regenerative therapeutic requires a safe, robust, and expedient reprogramming protocol. Here, we present a clinically relevant, step-by-step protocol for the extremely high-efficiency reprogramming of human dermal fibroblasts into iPSCs using a non-integrating approach. The core of the protocol consists of expressing pluripotency factors (SOX2, KLF4, cMYC, LIN28A, NANOG, OCT4-MyoD fusion) from in vitro transcribed messenger RNAs synthesized with modified nucleotides (modified mRNAs). The reprogramming modified mRNAs are transfected into primary fibroblasts every 48 h together with mature embryonic stem cell-specific microRNA-367/302 mimics for two weeks. The resulting iPSC colonies can then be isolated and directly expanded in feeder-free conditions. To maximize efficiency and consistency of our reprogramming protocol across fibroblast samples, we have optimized various parameters including the RNA transfection regimen, timing of transfections, culture conditions, and seeding densities. Importantly, our method generates high-quality iPSCs from most fibroblast sources, including difficult-to-reprogram diseased, aged, and/or senescent samples.


Assuntos
Reprogramação Celular/fisiologia , Fibroblastos/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , MicroRNAs/fisiologia , RNA Mensageiro/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Engenharia Genética/métodos , Humanos , Fator 4 Semelhante a Kruppel , Transfecção/métodos
17.
J Biol Chem ; 293(47): 18309-18317, 2018 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-30275014

RESUMO

Sec1/Munc18 (SM) proteins promote intracellular vesicle fusion by binding to N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). A key SNARE-binding mode of SM proteins involves the N-terminal peptide (N-peptide) motif of syntaxin, a SNARE subunit localized to the target membrane. In in vitro membrane fusion assays, inhibition of N-peptide motif binding previously has been shown to abrogate the stimulatory function of Munc18-1, a SM protein involved in synaptic exocytosis in neurons. The physiological role of the N-peptide-binding mode, however, remains unclear. In this work, we addressed this key question using a "clogged" Munc18-1 protein, in which an ectopic copy of the syntaxin N-peptide motif was directly fused to Munc18-1. We found that the ectopic N-peptide motif blocks the N-peptide-binding pocket of Munc18-1, preventing the latter from binding to the native N-peptide motif on syntaxin-1. In a reconstituted system, we observed that clogged Munc18-1 is defective in promoting SNARE zippering. When introduced into induced neuronal cells (iN cells) derived from human pluripotent stem cells, clogged Munc18-1 failed to mediate synaptic exocytosis. As a result, both spontaneous and evoked synaptic transmission was abolished. These genetic findings provide direct evidence for the crucial role of the N-peptide-binding mode of Munc18-1 in synaptic exocytosis. We suggest that clogged SM proteins will also be instrumental in defining the physiological roles of the N-peptide-binding mode in other vesicle-fusion pathways.


Assuntos
Exocitose , Proteínas Munc18/química , Proteínas Munc18/metabolismo , Peptídeos/metabolismo , Sinapses/metabolismo , Motivos de Aminoácidos , Humanos , Proteínas Munc18/genética , Neurônios/química , Neurônios/metabolismo , Peptídeos/química , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Sinapses/química , Sinapses/genética , Transmissão Sináptica , Sintaxina 1/química , Sintaxina 1/genética , Sintaxina 1/metabolismo
18.
Nat Commun ; 9(1): 745, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29467427

RESUMO

Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine; however, their potential clinical application is hampered by the low efficiency of somatic cell reprogramming. Here, we show that the synergistic activity of synthetic modified mRNAs encoding reprogramming factors and miRNA-367/302s delivered as mature miRNA mimics greatly enhances the reprogramming of human primary fibroblasts into iPSCs. This synergistic activity is dependent upon an optimal RNA transfection regimen and culturing conditions tailored specifically to human primary fibroblasts. As a result, we can now generate up to 4,019 iPSC colonies from only 500 starting human primary neonatal fibroblasts and reprogram up to 90.7% of individually plated cells, producing multiple sister colonies. This methodology consistently generates clinically relevant, integration-free iPSCs from a variety of human patient's fibroblasts under feeder-free conditions and can be applicable for the clinical translation of iPSCs and studying the biology of reprogramming.


Assuntos
Técnicas de Reprogramação Celular , Linhagem Celular , Fibroblastos , Humanos , Células-Tronco Pluripotentes Induzidas , RNA
19.
Haematologica ; 102(12): 1985-1994, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28883079

RESUMO

While dietary folate deficiency is associated with increased risk for birth defects and other diseases, evidence suggests that supplementation with folic acid can contribute to predisposition to some diseases, including immune dysfunction and cancer. Herein, we show that diets supplemented with folic acid both below and above the recommended levels led to significantly altered metabolism in multiple tissues in mice. Surprisingly, both low and excessive dietary folate induced similar metabolic changes, which were particularly evident for nucleotide biosynthetic pathways in B-progenitor cells. Diet-induced metabolic changes in these cells partially phenocopied those observed in mice treated with anti-folate drugs, suggesting that both deficiency and excessive levels of dietary folic acid compromise folate-dependent biosynthetic pathways. Both folate deficiency and excessive dietary folate levels compromise hematopoiesis, resulting in defective cell cycle progression, persistent DNA damage, and impaired production of lymphocytes. These defects reduce the reconstitution potential in transplantation settings and increase radiation-induced mortality. We conclude that excessive folic acid supplementation can metabolically mimic dietary folate insufficiency, leading to similar functional impairment of hematopoiesis.


Assuntos
Suplementos Nutricionais/efeitos adversos , Deficiência de Ácido Fólico/metabolismo , Ácido Fólico/farmacologia , Hematopoese/efeitos dos fármacos , Animais , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Metabolismo/efeitos dos fármacos , Camundongos , Nucleotídeos/biossíntese , Células Precursoras de Linfócitos B/efeitos dos fármacos , Células Precursoras de Linfócitos B/metabolismo
20.
Stem Cells Dev ; 24(21): 2547-60, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26176320

RESUMO

The hedgehog (Hh) signaling pathway plays fundamental roles during embryonic development and tumorigenesis. Previously, we have shown that ablation of the tumor suppressor and negative regulator, Suppressor of fused (Sufu), within this pathway causes embryonic lethality around E9.5 in the mouse. In this study, we examine how lack of Sufu influences early cell fate determination processes. We established embryonic stem cell (ESC) lines from preimplantation Sufu(-/-) and wild-type mouse embryos and show that these ESCs express the typical pluripotency markers, alkaline phosphatase, SSEA-1, Oct4, Sox2, and Nanog. We demonstrate that these ESCs express all core Hh pathway components and that glioma-associated protein (Gli)1 mRNA levels are increased in Sufu(-/-) ESCs. Upon spontaneous differentiation of Sufu(-/-) ESCs into embryoid bodies (EBs) in vitro, the Hh pathway is strongly upregulated as indicated by an increase in both Gli1 and patched1 (Ptch1) gene expression. Interestingly, developing Sufu(-/-) EBs were smaller than their wild-type counterparts and showed decreased expression of the ectodermal markers, Fgf5 and Sox1. In vivo teratoma formation revealed that Sufu(-/-) ESCs have a limited capacity for differentiation as the resulting tumors lacked the mesodermal derivatives, cartilage and bone. However, Sufu(-/-) ESCs were able to develop into chondrocytes and osteocytes in vitro, which suggests a differential response of ESCs compared with in vivo conditions. Our findings suggest a regulatory function of the Hh signaling pathway in early mesodermal cell fate determination and emphasize the role of Sufu as a key molecule in this process.


Assuntos
Diferenciação Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Desenvolvimento Embrionário/fisiologia , Células-Tronco Embrionárias/citologia , Proteínas Hedgehog/metabolismo , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/genética , Transformação Celular Neoplásica/genética , Desenvolvimento Embrionário/genética , Genes Supressores de Tumor/fisiologia , Camundongos Knockout , Camundongos Transgênicos , Transdução de Sinais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...