Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819090

RESUMO

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium , Antimaláricos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/parasitologia , Plasmodium/metabolismo , Plasmodium falciparum
2.
mBio ; 12(6): e0322121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34903049

RESUMO

The routes of uptake and efflux should be considered when developing new drugs so that they can effectively address their intracellular targets. As a general rule, drugs appear to enter cells via protein carriers that normally carry nutrients or metabolites. A previously developed pipeline that searched for drug transporters using Saccharomyces cerevisiae mutants carrying single-gene deletions identified import routes for most compounds tested. However, due to the redundancy of transporter functions, we propose that this methodology can be improved by utilizing double mutant strains in both low- and high-throughput screens. We constructed a library of over 14,000 strains harboring double deletions of genes encoding 122 nonessential plasma membrane transporters and performed low- and high-throughput screens identifying possible drug import routes for 23 compounds. In addition, the high-throughput assay enabled the identification of putative efflux routes for 21 compounds. Focusing on azole antifungals, we were able to identify the involvement of the myo-inositol transporter, Itr1p, in the uptake of these molecules and to confirm the role of Pdr5p in their export. IMPORTANCE Our library of double transporter deletion strains is a powerful tool for rapid identification of potential drug import and export routes, which can aid in determining the chemical groups necessary for transport via specific carriers. This information may be translated into a better design of drugs for optimal absorption by target tissues and the development of drugs whose utility is less likely to be compromised by the selection of resistant mutants.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Deleção de Genes , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xenobióticos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Transporte Biológico , Biblioteca Gênica , Ensaios de Triagem em Larga Escala , Proteínas de Transporte de Monossacarídeos/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Xenobióticos/farmacologia
3.
ACS Infect Dis ; 7(4): 759-776, 2021 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-33689276

RESUMO

Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation-a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.


Assuntos
Antimaláricos , Antimaláricos/farmacologia , Indóis/farmacologia , Chaperonas Moleculares , Plasmodium falciparum
5.
PLoS Negl Trop Dis ; 14(10): e0008762, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33044977

RESUMO

Deoxyhypusine synthase (DHS) catalyzes the first step of the post-translational modification of eukaryotic translation factor 5A (eIF5A), which is the only known protein containing the amino acid hypusine. Both proteins are essential for eukaryotic cell viability, and DHS has been suggested as a good candidate target for small molecule-based therapies against eukaryotic pathogens. In this work, we focused on the DHS enzymes from Brugia malayi and Leishmania major, the causative agents of lymphatic filariasis and cutaneous leishmaniasis, respectively. To enable B. malayi (Bm)DHS for future target-based drug discovery programs, we determined its crystal structure bound to cofactor NAD+. We also reported an in vitro biochemical assay for this enzyme that is amenable to a high-throughput screening format. The L. major genome encodes two DHS paralogs, and attempts to produce them recombinantly in bacterial cells were not successful. Nevertheless, we showed that ectopic expression of both LmDHS paralogs can rescue yeast cells lacking the endogenous DHS-encoding gene (dys1). Thus, functionally complemented dys1Δ yeast mutants can be used to screen for new inhibitors of the L. major enzyme. We used the known human DHS inhibitor GC7 to validate both in vitro and yeast-based DHS assays. Our results show that BmDHS is a homotetrameric enzyme that shares many features with its human homologue, whereas LmDHS paralogs are likely to form a heterotetrameric complex and have a distinct regulatory mechanism. We expect our work to facilitate the identification and development of new DHS inhibitors that can be used to validate these enzymes as vulnerable targets for therapeutic interventions against B. malayi and L. major infections.


Assuntos
Anti-Helmínticos/farmacologia , Antiprotozoários/farmacologia , Brugia Malayi/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Proteínas de Helminto/antagonistas & inibidores , Leishmania major/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Proteínas de Protozoários/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anti-Helmínticos/química , Antiprotozoários/química , Brugia Malayi/enzimologia , Brugia Malayi/genética , Brugia Malayi/crescimento & desenvolvimento , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Ensaios de Triagem em Larga Escala , Leishmania major/enzimologia , Leishmania major/genética , Leishmania major/crescimento & desenvolvimento , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Alinhamento de Sequência
6.
Artigo em Inglês | MEDLINE | ID: mdl-32601162

RESUMO

Widespread resistance against antimalarial drugs thwarts current efforts for controlling the disease and urges the discovery of new effective treatments. Drug repositioning is increasingly becoming an attractive strategy since it can reduce costs, risks, and time-to-market. Herein, we have used this strategy to identify novel antimalarial hits. We used a comparative in silico chemogenomics approach to select Plasmodium falciparum and Plasmodium vivax proteins as potential drug targets and analyzed them using a computer-assisted drug repositioning pipeline to identify approved drugs with potential antimalarial activity. Among the seven drugs identified as promising antimalarial candidates, the anthracycline epirubicin was selected for further experimental validation. Epirubicin was shown to be potent in vitro against sensitive and multidrug-resistant P. falciparum strains and P. vivax field isolates in the nanomolar range, as well as being effective against an in vivo murine model of Plasmodium yoelii Transmission-blocking activity was observed for epirubicin in vitro and in vivo Finally, using yeast-based haploinsufficiency chemical genomic profiling, we aimed to get insights into the mechanism of action of epirubicin. Beyond the target predicted in silico (a DNA gyrase in the apicoplast), functional assays suggested a GlcNac-1-P-transferase (GPT) enzyme as a potential target. Docking calculations predicted the binding mode of epirubicin with DNA gyrase and GPT proteins. Epirubicin is originally an antitumoral agent and presents associated toxicity. However, its antiplasmodial activity against not only P. falciparum but also P. vivax in different stages of the parasite life cycle supports the use of this drug as a scaffold for hit-to-lead optimization in malaria drug discovery.


Assuntos
Antimaláricos , Malária Vivax , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Epirubicina/uso terapêutico , Malária Vivax/tratamento farmacológico , Camundongos , Plasmodium falciparum/genética , Plasmodium vivax/genética
7.
ACS Omega ; 4(13): 15628-15635, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31572864

RESUMO

Malaria remains a major detrimental parasitic disease in the developing world, with more than 200 million cases annually. Widespread drug-resistant parasite strains push for the development of novel antimalarial drugs. Plant-derived natural products are key sources of antimalarial molecules. Euterpe oleracea Martius ("açaí") originates from Brazil and has anti-inflammatory and antineoplasic properties. Here, we evaluated the antimalarial efficacy of three phenolic fractions of açaí; total phenolics (1), nonanthocyanin phenolics (2), and total anthocyanins (3). In vitro, fraction 2 moderately inhibited parasite growth in chloroquine-sensitive (HB3) and multiresistant (Dd2) Plasmodium falciparum strains, while none of the fractions was toxic to noncancer cells. Despite the limited activity in vitro, the oral treatment with 20 mg/kg of fraction 1 reduced parasitemia by 89.4% in Plasmodium chabaudi-infected mice and prolonged survival. Contrasting in vitro and in vivo activities of 1 suggest key antiplasmodial roles for polyphenol metabolites rather than the fraction itself. Finally, we performed haploinsufficiency chemical genomic profiling (HIP) utilizing heterozygous Saccharomyces cerevisiae deletion mutants to identify molecular mechanisms of açaí fractions. HIP results indicate proteostasis as the main cellular pathway affected by fraction 2. These results open avenues to develop açaí polyphenols as potential new antimalarial candidates.

8.
BMC Biotechnol ; 18(1): 22, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29642881

RESUMO

BACKGROUND: Violacein is a deep violet compound that is produced by a number of bacterial species. It is synthesized from tryptophan by a pathway that involves the sequential action of 5 different enzymes (encoded by genes vioA to vioE). Violacein has antibacterial, antiparasitic, and antiviral activities, and also has the potential of inducing apoptosis in certain cancer cells. RESULTS: Here, we describe the construction of a series of plasmids harboring the complete or partial violacein biosynthesis operon and their use to enable production of violacein and deoxyviolacein in E.coli. We performed in vitro assays to determine the biological activity of these compounds against Plasmodium, Trypanosoma, and mammalian cells. We found that, while deoxyviolacein has a lower activity against parasites than violacein, its toxicity to mammalian cells is insignificant compared to that of violacein. CONCLUSIONS: We constructed E. coli strains capable of producing biologically active violacein and related compounds, and propose that deoxyviolacein might be a useful starting compound for the development of antiparasite drugs.


Assuntos
Antimaláricos/farmacologia , Antineoplásicos/farmacologia , Alcaloides Indólicos/farmacologia , Indóis/farmacologia , Compostos de Espiro/farmacologia , Tripanossomicidas/farmacologia , Animais , Antimaláricos/isolamento & purificação , Antimaláricos/metabolismo , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Células COS , Chlorocebus aethiops , Escherichia coli/genética , Células Hep G2 , Humanos , Alcaloides Indólicos/isolamento & purificação , Alcaloides Indólicos/metabolismo , Indóis/isolamento & purificação , Indóis/metabolismo , Engenharia Metabólica , Óperon , Plasmídeos/genética , Plasmodium falciparum/efeitos dos fármacos , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/metabolismo , Tripanossomicidas/isolamento & purificação , Tripanossomicidas/metabolismo , Trypanosoma cruzi/efeitos dos fármacos
9.
Sci Rep ; 8(1): 1038, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348637

RESUMO

Malaria, caused by parasites of the genus Plasmodium, leads to over half a million deaths per year, 90% of which are caused by Plasmodium falciparum. P. vivax usually causes milder forms of malaria; however, P. vivax can remain dormant in the livers of infected patients for weeks or years before re-emerging in a new bout of the disease. The only drugs available that target all stages of the parasite can lead to severe side effects in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency; hence, there is an urgent need to develop new drugs active against blood and liver stages of the parasite. Different groups have demonstrated that triclosan, a common antibacterial agent, targets the Plasmodium liver enzyme enoyl reductase. Here, we provide 4 independent lines of evidence demonstrating that triclosan specifically targets both wild-type and pyrimethamine-resistant P. falciparum and P. vivax dihydrofolate reductases, classic targets for the blood stage of the parasite. This makes triclosan an exciting candidate for further development as a dual specificity antimalarial, which could target both liver and blood stages of the parasite.


Assuntos
Antimaláricos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Plasmodium/efeitos dos fármacos , Plasmodium/enzimologia , Tetra-Hidrofolato Desidrogenase/metabolismo , Triclosan/farmacologia , Antimaláricos/química , Sítios de Ligação , Ativação Enzimática/efeitos dos fármacos , Antagonistas do Ácido Fólico/química , Modelos Moleculares , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tetra-Hidrofolato Desidrogenase/química , Triclosan/química
10.
PLoS Negl Trop Dis ; 10(1): e0004401, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26812604

RESUMO

BACKGROUND: Lymphatic filariasis is caused by the parasitic worms Wuchereria bancrofti, Brugia malayi or B. timori, which are transmitted via the bites from infected mosquitoes. Once in the human body, the parasites develop into adult worms in the lymphatic vessels, causing severe damage and swelling of the affected tissues. According to the World Health Organization, over 1.2 billion people in 58 countries are at risk of contracting lymphatic filariasis. Very few drugs are available to treat patients infected with these parasites, and these have low efficacy against the adult stages of the worms, which can live for 7-15 years in the human body. The requirement for annual treatment increases the risk of drug-resistant worms emerging, making it imperative to develop new drugs against these devastating diseases. METHODOLOGY/PRINCIPAL FINDINGS: We have developed a yeast-based, high-throughput screening system whereby essential yeast genes are replaced with their filarial or human counterparts. These strains are labeled with different fluorescent proteins to allow the simultaneous monitoring of strains with parasite or human genes in competition, and hence the identification of compounds that inhibit the parasite target without affecting its human ortholog. We constructed yeast strains expressing eight different Brugia malayi drug targets (as well as seven of their human counterparts), and performed medium-throughput drug screens for compounds that specifically inhibit the parasite enzymes. Using the Malaria Box collection (400 compounds), we identified nine filarial specific inhibitors and confirmed the antifilarial activity of five of these using in vitro assays against Brugia pahangi. CONCLUSIONS/SIGNIFICANCE: We were able to functionally complement yeast deletions with eight different Brugia malayi enzymes that represent potential drug targets. We demonstrated that our yeast-based screening platform is efficient in identifying compounds that can discriminate between human and filarial enzymes. Hence, we are confident that we can extend our efforts to the construction of strains with further filarial targets (in particular for those species that cannot be cultivated in the laboratory), and perform high-throughput drug screens to identify specific inhibitors of the parasite enzymes. By establishing synergistic collaborations with researchers working directly on different parasitic worms, we aim to aid antihelmintic drug development for both human and veterinary infections.


Assuntos
Anti-Helmínticos/farmacologia , Brugia Malayi/efeitos dos fármacos , Proteínas de Helminto/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Brugia Malayi/química , Brugia Malayi/enzimologia , Brugia Malayi/genética , Inibidores Enzimáticos/farmacologia , Filariose/parasitologia , Expressão Gênica , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Humanos , Dados de Sequência Molecular , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
11.
J R Soc Interface ; 12(104): 20141289, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25652463

RESUMO

There is an urgent need to make drug discovery cheaper and faster. This will enable the development of treatments for diseases currently neglected for economic reasons, such as tropical and orphan diseases, and generally increase the supply of new drugs. Here, we report the Robot Scientist 'Eve' designed to make drug discovery more economical. A Robot Scientist is a laboratory automation system that uses artificial intelligence (AI) techniques to discover scientific knowledge through cycles of experimentation. Eve integrates and automates library-screening, hit-confirmation, and lead generation through cycles of quantitative structure activity relationship learning and testing. Using econometric modelling we demonstrate that the use of AI to select compounds economically outperforms standard drug screening. For further efficiency Eve uses a standardized form of assay to compute Boolean functions of compound properties. These assays can be quickly and cheaply engineered using synthetic biology, enabling more targets to be assayed for a given budget. Eve has repositioned several drugs against specific targets in parasites that cause tropical diseases. One validated discovery is that the anti-cancer compound TNP-470 is a potent inhibitor of dihydrofolate reductase from the malaria-causing parasite Plasmodium vivax.


Assuntos
Desenho de Fármacos , Reposicionamento de Medicamentos , Doenças Raras/tratamento farmacológico , Tecnologia Farmacêutica/tendências , Algoritmos , Antineoplásicos/uso terapêutico , Automação , Avaliação Pré-Clínica de Medicamentos , Humanos , Malária Vivax/tratamento farmacológico , Modelos Estatísticos , Plasmodium vivax/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Análise de Regressão , Reprodutibilidade dos Testes , Software , Medicina Tropical
12.
Antimicrob Agents Chemother ; 59(2): 1110-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487796

RESUMO

Plasmodium falciparum, the most deadly agent of malaria, displays a wide variety of resistance mechanisms in the field. The ability of antimalarial compounds in development to overcome these must therefore be carefully evaluated to ensure uncompromised activity against real-life parasites. We report here on the selection and phenotypic as well as genotypic characterization of a panel of sensitive and multidrug-resistant P. falciparum strains that can be used to optimally identify and deconvolute the cross-resistance signals from an extended panel of investigational antimalarials. As a case study, the effectiveness of the selected panel of strains was demonstrated using the 1,2,4-oxadiazole series, a newly identified antimalarial series of compounds with in vitro activity against P. falciparum at nanomolar concentrations. This series of compounds was to be found inactive against several multidrug-resistant strains, and the deconvolution of this signal implicated pfcrt, the genetic determinant of chloroquine resistance. Targeted mode-of-action studies further suggested that this new chemical series might act as falcipain 2 inhibitors, substantiating the suggestion that these compounds have a site of action similar to that of chloroquine but a distinct mode of action. New antimalarials must overcome existing resistance and, ideally, prevent its de novo appearance. The panel of strains reported here, which includes recently collected as well as standard laboratory-adapted field isolates, is able to efficiently detect and precisely characterize cross-resistance and, as such, can contribute to the faster development of new, effective antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Antimaláricos/química , Resistência a Medicamentos/fisiologia , Testes de Sensibilidade Parasitária
13.
Open Biol ; 3(2): 120158, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23446112

RESUMO

We have developed a robust, fully automated anti-parasitic drug-screening method that selects compounds specifically targeting parasite enzymes and not their host counterparts, thus allowing the early elimination of compounds with potential side effects. Our yeast system permits multiple parasite targets to be assayed in parallel owing to the strains' expression of different fluorescent proteins. A strain expressing the human target is included in the multiplexed screen to exclude compounds that do not discriminate between host and parasite enzymes. This form of assay has the advantages of using known targets and not requiring the in vitro culture of parasites. We performed automated screens for inhibitors of parasite dihydrofolate reductases, N-myristoyltransferases and phosphoglycerate kinases, finding specific inhibitors of parasite targets. We found that our 'hits' have significant structural similarities to compounds with in vitro anti-parasitic activity, validating our screens and suggesting targets for hits identified in parasite-based assays. Finally, we demonstrate a 60 per cent success rate for our hit compounds in killing or severely inhibiting the growth of Trypanosoma brucei, the causative agent of African sleeping sickness.


Assuntos
Antiparasitários/farmacologia , Chumbo/química , Bibliotecas de Moléculas Pequenas/química , Tripanossomíase Africana/tratamento farmacológico , Antiparasitários/química , Descoberta de Drogas , Ensaios de Triagem em Larga Escala , Humanos , Chumbo/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Tripanossomíase Africana/patologia , Leveduras/efeitos dos fármacos
14.
Drug Discov Today ; 18(5-6): 218-39, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23207804

RESUMO

A recent paper in this journal sought to counter evidence for the role of transport proteins in effecting drug uptake into cells, and questions that transporters can recognize drug molecules in addition to their endogenous substrates. However, there is abundant evidence that both drugs and proteins are highly promiscuous. Most proteins bind to many drugs and most drugs bind to multiple proteins (on average more than six), including transporters (mutations in these can determine resistance); most drugs are known to recognise at least one transporter. In this response, we alert readers to the relevant evidence that exists or is required. This needs to be acquired in cells that contain the relevant proteins, and we highlight an experimental system for simultaneous genome-wide assessment of carrier-mediated uptake in a eukaryotic cell (yeast).


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Preparações Farmacêuticas/metabolismo , Transporte Biológico , Humanos , Leveduras/genética , Leveduras/metabolismo
15.
PLoS Negl Trop Dis ; 5(10): e1320, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21991399

RESUMO

BACKGROUND: The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents. METHODOLOGY/PRINCIPAL FINDINGS: Using pyrimethamine/dihydrofolate reductase (DHFR) as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi) to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p) expressing yeast ((Sc)DFR1), human ((Hs)DHFR), Schistosoma ((Sm)DHFR), and Trypanosoma ((Tb)DHFR and (Tc)DHFR) DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((Pf)DHFR and (Pv)DHFR) DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pf)dhfr(51I,59R,108N)) are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs) and N-myristoyl transferases (NMTs). CONCLUSIONS/SIGNIFICANCE: We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.


Assuntos
Antiprotozoários/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas de Protozoários/biossíntese , Saccharomyces cerevisiae/efeitos dos fármacos , Antiprotozoários/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Organismos Geneticamente Modificados , Proteínas de Protozoários/genética , Pirimetamina/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Saccharomyces cerevisiae/genética , Tetra-Hidrofolato Desidrogenase/biossíntese , Tetra-Hidrofolato Desidrogenase/genética
16.
BMC Biol ; 9: 70, 2011 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-22023736

RESUMO

BACKGROUND: The uptake of drugs into cells has traditionally been considered to be predominantly via passive diffusion through the bilayer portion of the cell membrane. The recent recognition that drug uptake is mostly carrier-mediated raises the question of which drugs use which carriers. RESULTS: To answer this, we have constructed a chemical genomics platform built upon the yeast gene deletion collection, using competition experiments in batch fermenters and robotic automation of cytotoxicity screens, including protection by 'natural' substrates. Using these, we tested 26 different drugs and identified the carriers required for 18 of the drugs to gain entry into yeast cells. CONCLUSIONS: As well as providing a useful platform technology, these results further substantiate the notion that the cellular uptake of pharmaceutical drugs normally occurs via carrier-mediated transport and indicates that establishing the identity and tissue distribution of such carriers should be a major consideration in the design of safe and effective drugs.


Assuntos
Membrana Celular/metabolismo , Genômica/métodos , Preparações Farmacêuticas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Biológico , Canavanina/metabolismo , Permeabilidade da Membrana Celular , Avaliação Pré-Clínica de Medicamentos , Deleção de Genes , Estudo de Associação Genômica Ampla , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Reação em Cadeia da Polimerase
17.
Methods Mol Biol ; 759: 501-23, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21863505

RESUMO

Due to its genetic tractability and ease of manipulation, the yeast Saccharomyces cerevisiae has been extensively used as a model organism to understand how eukaryotic cells grow, divide, and respond to environmental changes. In this chapter, we reasoned that functional annotation of novel genes revealed by sequencing should adopt an integrative approach including both bioinformatics and experimental analysis to reveal functional conservation and divergence of complexes and pathways. The techniques and resources generated for systems biology studies in yeast have found a wide range of applications. Here we focused on using these technologies in revealing functions of genes from mammals, in identifying targets of novel and known drugs and in screening drugs targeting specific proteins and/or protein-protein interactions.


Assuntos
Descoberta de Drogas/métodos , Mamíferos/genética , Anotação de Sequência Molecular/métodos , Saccharomyces cerevisiae/genética , Animais , Biologia Computacional , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/uso terapêutico , Humanos , Mamíferos/metabolismo , Saccharomyces cerevisiae/metabolismo
18.
BMC Bioinformatics ; 8: 295, 2007 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-17686169

RESUMO

BACKGROUND: The translational efficiency of an mRNA can be modulated by upstream open reading frames (uORFs) present in certain genes. A uORF can attenuate translation of the main ORF by interfering with translational reinitiation at the main start codon. uORFs also occur by chance in the genome, in which case they do not have a regulatory role. Since the sequence determinants for functional uORFs are not understood, it is difficult to discriminate functional from spurious uORFs by sequence analysis. RESULTS: We have used comparative genomics to identify novel uORFs in yeast with a high likelihood of having a translational regulatory role. We examined uORFs, previously shown to play a role in regulation of translation in Saccharomyces cerevisiae, for evolutionary conservation within seven Saccharomyces species. Inspection of the set of conserved uORFs yielded the following three characteristics useful for discrimination of functional from spurious uORFs: a length between 4 and 6 codons, a distance from the start of the main ORF between 50 and 150 nucleotides, and finally a lack of overlap with, and clear separation from, neighbouring uORFs. These derived rules are inherently associated with uORFs with properties similar to the GCN4 locus, and may not detect most uORFs of other types. uORFs with high scores based on these rules showed a much higher evolutionary conservation than randomly selected uORFs. In a genome-wide scan in S. cerevisiae, we found 34 conserved uORFs from 32 genes that we predict to be functional; subsequent analysis showed the majority of these to be located within transcripts. A total of 252 genes were found containing conserved uORFs with properties indicative of a functional role; all but 7 are novel. Functional content analysis of this set identified an overrepresentation of genes involved in transcriptional control and development. CONCLUSION: Evolutionary conservation of uORFs in yeasts can be traced up to 100 million years of separation. The conserved uORFs have certain characteristics with respect to length, distance from each other and from the main start codon, and folding energy of the sequence. These newly found characteristics can be used to facilitate detection of other conserved uORFs.


Assuntos
Mapeamento Cromossômico/métodos , Evolução Molecular , Genoma Fúngico/genética , Fases de Leitura Aberta/genética , Sequências Reguladoras de Ácido Nucleico/genética , Saccharomyces cerevisiae/genética , Análise de Sequência de DNA/métodos , Algoritmos , Sequência de Bases , Sequência Conservada/genética , Dados de Sequência Molecular , Biossíntese de Proteínas/genética
19.
DNA Repair (Amst) ; 6(10): 1471-84, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17556048

RESUMO

The ubiquitination status of proteins can control numerous aspects of protein function through targeted destruction or by altering protein-protein interactions, subcellular localization, or enzymatic activity. In addition to enzymes that mediate the conjugation of ubiquitin moieties to target proteins, there are enzymes that catalyze the removal of ubiquitin, termed ubiquitin proteases. One such ubiquitin protease, Ubp3, exists in a complex with a partner protein: Bre5. This complex has been implicated in a variety of cellular activities, and was recently identified in large-scale screens for genetic interactions with known components of the DNA damage response pathway. We found that this complex plays a role in the cellular response to the DNA damaging agent phleomycin and strains lacking the complex have a defect in non-homologous end joining. Although this complex is also important for telomeric silencing, maintenance of the cell wall, and global transcriptional regulation, we present evidence suggesting that the role of this complex in DNA damage responses is distinct from these other roles. First, we found that Ubp3/Bre5 functions antagonistically with Bul1 in DNA damage responses, but not in its other cellular functions. Additionally, we have generated mutants of Bre5 that are specifically defective in DNA damage responses.


Assuntos
Proteínas de Transporte/fisiologia , Dano ao DNA , Endopeptidases/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Cromatina/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Plasmídeos , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina-Proteína Ligases
20.
Mutagenesis ; 20(3): 153-63, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15843385

RESUMO

DNA double-strand breaks (DSBs) are, arguably, the most deleterious form of DNA damage. An increasing body of evidence points to the inaccurate or inefficient repair of DSBs as a key step in tumorigenesis. Therefore, it is of great importance to understand the processes by which DSBs are detected and repaired. Clearly, these events must take place in the context of chromatin in vivo, and recently, a great deal of progress has been made in understanding the dynamic and active role that histone proteins and chromatin modifying activities play in DNA DSB repair. Here, we briefly review some of the most common techniques in studying DNA DSB responses in vivo, and focus on the contributions of covalent modifications of core histone proteins to these DNA DSB responses.


Assuntos
Cromatina/metabolismo , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Histonas/metabolismo , Sequência de Aminoácidos , Animais , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Histonas/genética , Humanos , Dados de Sequência Molecular , Leveduras/genética , Leveduras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...