Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(36): e202308782, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37522609

RESUMO

Electrochemical CO2 reduction (CO2 R) in acidic media with Cu-based catalysts tends to suffer from lowered selectivity towards multicarbon products. This could in principle be mitigated using tandem catalysis, whereby the *CO coverage on Cu is increased by introducing a CO generating catalyst (e.g. Ag) in close proximity. Although this has seen significant success in neutral/alkaline media, here we report that such a strategy becomes impeded in acidic electrolyte. This was investigated through the co-reduction of 13 CO2 /12 CO mixtures using a series of Cu and CuAg catalysts. These experiments provide strong evidence for the occurrence of tandem catalysis in neutral media and its curtailment under acidic conditions. Density functional theory simulations suggest that the presence of H3 O+ weakens the *CO binding energy of Cu, preventing effective utilization of tandem-supplied CO. Our findings also provide other unanticipated insights into the tandem catalysis reaction pathway and important design considerations for effective CO2 R in acidic media.

2.
Nano Lett ; 22(18): 7432-7440, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36069429

RESUMO

It has been long known that low molecular weight resists can achieve a very high resolution, theoretically close to the probe diameter of the electron beam lithography (EBL) system. Despite technological improvements in EBL systems, the advances in resists have lagged behind. Here we demonstrate that a low-molecular-mass single-source precursor resist (based on cadmium(II) ethylxanthate complexed with pyridine) is capable of a achieving resolution (4 nm) that closely matches the measured probe diameter (∼3.8 nm). Energetic electrons enable the top-down radiolysis of the resist, while they provide the energy to construct the functional material from the bottom-up─unit cell by unit cell. Since this occurs only within the volume of resist exposed to primary electrons, the minimum size of the patterned features is close to the beam diameter. We speculate that angstrom-scale patterning of functional materials is possible with single-source precursor resists using an aberration-corrected electron beam writer with a spot size of ∼1 Å.

3.
Nanotechnology ; 33(26)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35276685

RESUMO

We report significantly enhanced sensitivity of AlGaN/GaN-based high electron mobility transistor (HEMT) sensor by the targeted synthesis of IT and 2H coexisting phase MoS2and applying the gate bias voltage. The HEMT structures on Si (111) substrates were used for the detection of Hg2+ions. The optimum sensitive regime in terms ofVGSandVDSof the sensor was investigated by keeping the drain source voltageVDSconstant at 2 V and by only varying the gate bias voltageVGSfrom 0 to 3 V. The strongest sensing response obtained from the device was around 0.547 mA ppb-1atVGS = 3 V, which is 63.7% higher in comparison to the response achieved at 0 V which shows a sensing response of around 0.334 mA ppb-1. The current response depicts that the fabricated device is very sensitive and selective towards Hg2+ions. Moreover, the detection limit of our sensor at 3 V was calculated around 6.21 ppt, which attributes to the strong field created between the gate electrode and the HEMT channel due to the presence of 1T metallic phase in synthesized MoS2, indicating that the lower detection limits are achievable in adequate strong fields.

4.
ACS Appl Mater Interfaces ; 12(14): 16772-16781, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32175725

RESUMO

Molybdenum disulfide (MoS2) is traditionally grown at a high temperature and subsequently patterned to study its electronic properties or make devices. This method imposes severe limitations on the shape and size of MoS2 crystals that can be patterned precisely at required positions. Here, we describe a method of direct nanoscale patterning of MoS2 at room temperature by exposing a molybdenum thiocubane single-source precursor to a beam of electrons. Molybdenum thiocubanes with various alkylxanthate moieties [Mo4S4(ROCS2)6, where R = alkyl] were prepared using a "self-assembly" approach. Micro-Raman and micro-FTIR spectroscopic studies suggest that exposure to a relatively smaller dose of electrons results in the breakdown of xanthate moieties, leading to the formation of MoS2. High-resolution transmission electron micrographs suggest that the growth of MoS2 most likely happens along (100) planes. An electron-beam-induced chemical transformation of a molybdenum thiocubane resist was exploited to fabricate sub-10 nm MoS2 lines and dense dots as small as 13 nm with a pitch of 33 nm. Since this technique does not require the liftoff and etching steps, patterning of MoS2 with interesting shapes, sizes, and thicknesses potentially leading to tunable band gap is possible.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA