Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 568(7753): 551-556, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30971823

RESUMO

Synthetic lethality-an interaction between two genetic events through which the co-occurrence of these two genetic events leads to cell death, but each event alone does not-can be exploited for cancer therapeutics1. DNA repair processes represent attractive synthetic lethal targets, because many cancers exhibit an impairment of a DNA repair pathway, which can lead to dependence on specific repair proteins2. The success of poly(ADP-ribose) polymerase 1 (PARP-1) inhibitors in cancers with deficiencies in homologous recombination highlights the potential of this approach3. Hypothesizing that other DNA repair defects would give rise to synthetic lethal relationships, we queried dependencies in cancers with microsatellite instability (MSI), which results from deficient DNA mismatch repair. Here we analysed data from large-scale silencing screens using CRISPR-Cas9-mediated knockout and RNA interference, and found that the RecQ DNA helicase WRN was selectively essential in MSI models in vitro and in vivo, yet dispensable in models of cancers that are microsatellite stable. Depletion of WRN induced double-stranded DNA breaks and promoted apoptosis and cell cycle arrest selectively in MSI models. MSI cancer models required the helicase activity of WRN, but not its exonuclease activity. These findings show that WRN is a synthetic lethal vulnerability and promising drug target for MSI cancers.


Assuntos
Instabilidade de Microssatélites , Repetições de Microssatélites/genética , Neoplasias/genética , Mutações Sintéticas Letais/genética , Helicase da Síndrome de Werner/genética , Apoptose/genética , Sistemas CRISPR-Cas/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Quebras de DNA de Cadeia Dupla , Humanos , Modelos Genéticos , Neoplasias/patologia , Interferência de RNA , Proteína Supressora de Tumor p53/metabolismo , Helicase da Síndrome de Werner/deficiência
2.
FASEB Bioadv ; 1(8): 511-520, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32123847

RESUMO

Mutations in CHMP2B, an ESCRT-III (endosomal sorting complexes required for transport) component, are associated with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Neurodegenerative disorders including FTD are also associated with a disruption in circadian rhythms, but the mechanism underlying this defect is not well understood. Here, we ectopically expressed the human CHMP2B variant associated with FTD (CHMP2BIntron5) in flies using the GMR-GAL4 driver (GMR>CHMP2BIntron5) and analyzed their circadian rhythms at behavioral, cellular, and biochemical level. In GMR>CHMP2BIntron5 flies, we observed disrupted eclosion rhythms, shortened free-running circadian locomotor period, and reduced levels of timeless (tim) mRNA-a circadian pacemaker gene. We also observed that the GMR-GAL4 driver, primarily known for its expression in the retina, drives expression in a subset of tim expressing neurons in the optic lobe of the brain. The patterning of these GMR- and tim-positive neurons in the optic lobe, which appears distinct from the putative clusters of circadian pacemaker neurons in the fly brain, was disrupted in GMR>CHMP2BIntron5 flies. These results demonstrate that CHMP2BIntron5 can disrupt the normal function of the circadian clock in Drosophila.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...