Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(3): e14192, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36942233

RESUMO

A detailed kinetic investigation of As(III) oxidation was performed on gold surface within pH between ∼3.0 and ∼9.0. It was found that the As(III) oxidation on the gold surface follows a purely adsorption-controlled process irrespective of pH. The evaluated adsorption equilibrium constant decreased from 3.21 × 105 to 1.61 × 105 mol L-1 for acidic to basic medium, which implies the strong affinity of the arsenic species in the acidic medium. Besides, the estimation of Gibbs free energy revealed that an acidic medium promotes arsenic oxidation on gold surface. In mechanistic aspect, the oxidation reaction adopts a stepwise pathway for acidic medium and a concerted pathway for neutral and basic medium. From the substantial kinetic evaluation, it is established that a conducive and compatible environment for the oxidation of arsenic was found in an acidic medium rather than a basic or neutral medium on gold surface. Besides, in sensitivity concern, neutral and highly acidic medium is quite favourable for the arsenite oxidation on gold surface.

2.
Environ Pollut ; 307: 119560, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35654256

RESUMO

As a precursor to risk assessment and risk management through consuming contaminated seafood, food safety needs to be quantified and assured. Seaweed is an increasing dietary component, especially in developing countries, but there are few studies assessing uptake rates of contaminants from this route. As such, the present study determined likely human uptake due to the trace elemental (Fe, Mn, Ni, Cu, Zn, Se, Hg, and As) concentrations in the edible red seaweeds (Rhodophyta) Gelidium pusillum and Hypnea musciformis, growing in the industrialised Cox's Bazar coastal area of Bangladesh. Metal and metalloid concentrations in G. pusillum were in the order (mg/kg): Fe (797 ± 67) > Mn (69 ± 4) > Ni (12 ± 5) > Zn (9 ± 4) > Cu (9 ± 4) >Se (0.1 ± 0.1) > Hg (0.1 ± 0.01), and in H. musciformis: Fe (668 ± 58) > Mn (28 ± 5) > Ni (14 ± 2) > Zn (11 ± 5) > Cu (6 ± 4) >Se (0.2 ± 0.03) > Hg (0.04 ± 0.01). Despite the industrial activities in the area, and based on 10 g. day-1 seaweed consumption, it is concluded that these concentrations pose no risk to human health as part of a normal diet according to the targeted hazard quotient and hazard index (THQ and HI) (values < 1). In addition, and as a novel aspect for seaweeds, Selenium Health Benefit Values (Se-HBV) were determined and found to have positive values. Seaweed can be used as an absorber of inorganic metals for removing contamination in coastal waters. The results are a precursor to further research regarding the efficiency and rate at which seaweeds can sequester metal contamination in water. In addition, management techniques need to be developed thereby to control the contaminant inputs.


Assuntos
Mercúrio , Metais Pesados , Rodófitas , Alga Marinha , Oligoelementos , Poluentes Químicos da Água , Bioacumulação , Monitoramento Ambiental/métodos , Humanos , Metais Pesados/análise , Medição de Risco , Oligoelementos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...