Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 268(Pt 2): 131814, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38677679

RESUMO

Epigenetic processes, including non-coding RNA, histone modifications, and DNA methylation, play a vital role in connecting the environment to the development of a disorder, especially when there is a favorable genetic background. Ankylosing Spondylitis (AS) is a chronic type of spinal arthritis that highlights the significance of epigenetics in diseases related to autoimmunity and inflammation. MicroRNAs (miRNAs) are small non-coding RNAs that are involved in both normal and aberrant pathological and physiological gene expression. This study focuses on the pathophysiological pathways to clarify the role of miRNAs in AS. We have conducted a thorough investigation of the involvement of miRNAs in several processes, including inflammation, the production of new bone, T-cell activity, and the regulation of pathways such as BMP, Wnt, and TGFß signaling. Undoubtedly, miRNAs play a crucial role in enhancing our comprehension of the pathophysiology of AS, and their promise as a therapeutic strategy is quickly expanding.


Assuntos
Biomarcadores , Epigênese Genética , MicroRNAs , Espondilite Anquilosante , Espondilite Anquilosante/genética , Espondilite Anquilosante/diagnóstico , Espondilite Anquilosante/imunologia , Humanos , MicroRNAs/genética , Regulação da Expressão Gênica , Animais , Transdução de Sinais
2.
Pathol Res Pract ; 253: 155086, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38176308

RESUMO

Liver cancer stands as the fourth leading global cause of death, and its prognosis remains grim due to the limited effectiveness of current medical interventions. Among the various pathways implicated in the development of hepatocellular carcinoma (HCC), the hedgehog signaling pathway has emerged as a crucial player. Itraconazole, a relatively safe and cost-effective antifungal medication, has gained attention for its potential as an anticancer agent. Its primary mode of action involves inhibiting the hedgehog pathway, yet its impact on HCC has not been elucidated. The main objective of this study was to investigate the effect of itraconazole on diethylnitrosamine-induced early-stage HCC in rats. Our findings revealed that itraconazole exhibited a multifaceted arsenal against HCC by downregulating the expression of key components of the hedgehog pathway, shh, smoothened (SMO), and GLI family zinc finger 1 (GLI1), and GLI2. Additionally, itraconazole extended survival and improved liver tissue structure, attributed mainly to its inhibitory effects on hedgehog signaling. Besides, itraconazole demonstrated a regulatory effect on Notch1, and Wnt/ß-catenin signaling molecules. Consequently, itraconazole displayed diverse anticancer properties, including anti-inflammatory, antiangiogenic, antiproliferative, and apoptotic effects, as well as the potential to induce autophagy. Moreover, itraconazole exhibited a promise to impede the transformation of epithelial cells into a more mesenchymal-like phenotype. Overall, this study emphasizes the significance of targeting the hedgehog pathway with itraconazole as a promising avenue for further exploration in clinical studies related to HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Proteínas Hedgehog/genética , Itraconazol/farmacologia , Itraconazol/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt
3.
Pathol Res Pract ; 253: 155087, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183820

RESUMO

Globally, myocardial infarction (MI) and other cardiovascular illnesses have long been considered the top killers. Heart failure and mortality are the results of myocardial apoptosis, cardiomyocyte fibrosis, and cardiomyocyte hypertrophy, all of which are caused by MI. MicroRNAs (miRNAs) play a crucial regulatory function in the progression and advancement of heart disease following an MI. By consolidating the existing data on miRNAs, our aim is to gain a more comprehensive understanding of their role in the pathological progression of myocardial injury after MI and to identify potential crucial target pathways. Also included are the primary treatment modalities and their most recent developments. miRNAs have the ability to regulate both normal and pathological activity, including the key signaling pathways. As a result, they may exert medicinal benefits. This review presents a comprehensive analysis of the role of miRNAs in MI with a specific emphasis on their impact on the regeneration of cardiomyocytes and other forms of cell death, such as apoptosis, necrosis, and autophagy. Furthermore, the targets of pro- and anti-MI miRNAs are comparatively elucidated.


Assuntos
MicroRNAs , Infarto do Miocárdio , Humanos , MicroRNAs/metabolismo , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/patologia , Necrose/patologia , Apoptose/genética
4.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631038

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an irreversible and life-threatening lung disease of unknown etiology presenting only a few treatment options. TGF-ß signaling orchestrates a cascade of events driving pulmonary fibrosis (PF). Notably, recent research has affirmed the augmentation of TGF-ß receptor (TßR) signaling via HSP90 activation. HSP90, a molecular chaperone, adeptly stabilizes and folds TßRs, thus intricately regulating TGF-ß1 signaling. Our investigation illuminated the impact of alvespimycin, an HSP90 inhibitor, on TGF-ß-mediated transcriptional responses by inducing destabilization of TßRs. This outcome stems from the explicit interaction of TßR subtypes I and II with HSP90, where they are clients of this cellular chaperone. It is worth noting that regulation of proteasome-dependent degradation of TßRs is a critical standpoint in the termination of TGF-ß signal transduction. Oleuropein, the principal bioactive compound found in Olea europaea, is acknowledged for its role as a proteasome activator. In this study, our aim was to explore the efficacy of a combined therapy involving oleuropein and alvespimycin for the treatment of PF. We employed a PF rat model that was induced by intratracheal bleomycin infusion. The application of this dual therapy yielded a noteworthy impediment to the undesired activation of TGF-ß/mothers against decapentaplegic homologs 2 and 3 (SMAD2/3) signaling. Consequently, this novel combination showcased improvements in both lung tissue structure and function while also effectively restraining key fibrosis markers such as PDGF-BB, TIMP-1, ACTA2, col1a1, and hydroxyproline. On a mechanistic level, our findings unveiled that the antifibrotic impact of this combination therapy likely stemmed from the enhanced degradation of both TßRI and TßRII. In conclusion, the utilization of proteasomal activators in conjunction with HSP90 inhibitors ushers in a promising frontier for the management of PF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...