Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 71(4): 2105-2112, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36668901

RESUMO

Sugar beet pectins (SBPs) are known for their emulsifying properties, but it is yet unknown which structural elements are most important for functionality. Recent results indicated that the arabinose content has a decisive influence, but the approach applied did not allow causality to be established. In this study, a mostly intact SBP was selectively modified and the obtained pectins were analyzed for their molecular structure and their emulsifying properties. De-esterification only resulted in a moderate increase in droplet size. The length of the pectin backbone only influenced the emulsifying properties when the homogalacturonan backbone was cleaved to a higher extent. By using different arabinan-modifying enzymes, it was demonstrated that both higher portions and chain lengths of arabinans positively influence the emulsifying properties of SBPs. Therefore, we were able to refine the structure-function relationships for acid-extracted SBPs, which can be used to optimize extraction conditions.


Assuntos
Beta vulgaris , Esterificação , Beta vulgaris/química , Pectinas/química , Arabinose
2.
Foods ; 11(2)2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053946

RESUMO

The influence of the conformation of sugar beet pectin (SBP) on the interfacial and emulsifying properties was investigated. The colloidal properties of SBP, such as zeta potential and hydrodynamic diameter, were characterized at different pH levels. Furthermore, pendant drop tensiometry and quartz crystal microgravimetry were used to study adsorption behavior (adsorbed mass and adsorption rate) and stabilizing mechanism (layer thickness and interfacial tension). A more compact conformation resulted in a faster reduction of interfacial tension, higher adsorbed mass, and a thicker adsorption layer. In addition, emulsions were prepared at varying conditions (pH 3-5) and formulations (1-30 wt% MCT oil, 0.1-2 wt% SBP), and their droplet size distributions were measured. The smallest oil droplets could be stabilized at pH 3. However, significantly more pectin was required at pH 3 compared to pH 4 or 5 to sufficiently stabilize the oil droplets. Both phenomena were attributed to the more compact conformation of SBP at pH < pKa: On the one hand, pectins adsorbed faster and in greater quantity, forming a thicker interfacial layer. On the other hand, they covered less interfacial area per SBP molecule. Therefore, the SBP concentration must be chosen appropriately depending on the conformation.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32432093

RESUMO

Glycolipids are considered an alternative to petrochemically based surfactants because they are non-toxic, biodegradable, and less harmful to the environment while having comparable surface-active properties. They can be produced chemically or enzymatically in organic solvents or in deep eutectic solvents (DES) from renewable resources. DES are non-flammable, non-volatile, biodegradable, and almost non-toxic. Unlike organic solvents, sugars are easily soluble in hydrophilic DES. However, DES are highly viscous systems and restricted mass transfer is likely to be a major limiting factor for their application. Limiting factors for glycolipid synthesis in DES are not generally well understood. Therefore, the influence of external mass transfer, fatty acid concentration, and distribution on initial reaction velocity in two hydrophilic DES (choline:urea and choline:glucose) was investigated. At agitation speeds of and higher than 60 rpm, the viscosity of both DES did not limit external mass transfer. Fatty acid concentration of 0.5 M resulted in highest initial reaction velocity while higher concentrations had negative effects. Fatty acid accessibility was identified as a limiting factor for glycolipid synthesis in hydrophilic DES. Mean droplet sizes of fatty acid-DES emulsions can be significantly decreased by ultrasonic pretreatment resulting in significantly increased initial reaction velocity and yield (from 0.15 ± 0.03 µmol glucose monodecanoate/g DES to 0.57 ± 0.03 µmol/g) in the choline: urea DES. The study clearly indicates that fatty acid accessibility is a limiting factor in enzymatic glycolipid synthesis in DES. Furthermore, it was shown that physical pretreatment of fatty acid-DES emulsions is mandatory to improve the availability of fatty acids.

4.
J Agric Food Chem ; 67(47): 13108-13118, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31738546

RESUMO

Glucansucrases can be used to glucosylate various plant-derived phenolic compounds by using sucrose as donor substrate. We applied Lactobacillus reuteri TMW 1.106 dextransucrase to glucosylate the acceptor substrates caffeic acid and gallic acid. Subsequently, monoglucosylated and in particular oligo- and polyglucosylated conjugates were characterized by using different chromatographic techniques and two-dimensional NMR spectroscopy. Both acceptors were substituted at positions O3 and O4. Under the conditions used, two monoglucosylated products were formed for caffeic acid, whereas only one O3-monosubstituted conjugate was detected for gallic acid. However, both acceptors resulted in O4-substituted oligo- and polyglucosylated conjugates, the amount of which was higher from gallic acid than from caffeic acid. Profile analysis tensiometry suggested that, in contrast to unmodified dextrans, oligo- and polymeric glucoconjugates of gallic acid are highly interfacially active. Overall, we provide the first detailed characterization of enzymatically conjugated oligo- and polymeric dextrans, which may have further potential as functional ingredients.


Assuntos
Proteínas de Bactérias/química , Ácidos Cafeicos/química , Ácido Gálico/química , Glucose/química , Glucosiltransferases/química , Limosilactobacillus reuteri/enzimologia , Biocatálise , Dextranos/química , Glicosilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...