Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18778, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37907550

RESUMO

Adapting two-dimensional (2D) van der Walls bilayer heterostructure is an efficient technique for realizing fascinating properties and playing a key role in solar energy-driven water decomposition schemes. By means of first-principles calculations, this study reveals the intriguing potential of a novel 2D van der Walls hetero-bilayer consisting of GeC and AlN layer in the photocatalytic water splitting method to generate hydrogen. The GeC/AlN heterostructure has an appropriate band gap of 2.05 eV, wherein the band edges are in proper energetic positions to provoke the water redox reaction to generate hydrogen and oxygen. The type-II band alignment of the bilayer facilitates the real-space spontaneous separation of the photogenerated electrons and holes in the different layers, improving the photocatalytic activity significantly. Analysis of the electrostatic potential and the charge density difference unravels the build-up of an inherent electric field at the interface, preventing electron-hole recombination. The ample absorption spectrum of the bilayer from the ultra-violet to the near-infrared region, reaching up to 8.71 × 105/cm, combined with the resiliency to the biaxial strain, points out the excellent photocatalytic performance of the bilayer heterostructure. On top of rendering useful information on the key features of the GeC/AlN hetero-bilayer, the study offers informative details on the experimental design of the van der Walls bilayer heterostructure for solar-to-hydrogen conversion applications.

2.
Sci Rep ; 12(1): 20106, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36418922

RESUMO

Two-dimensional (2D) van der Waals (vdW) heterostructures made by vertical assembling of two different layers have drawn immense attention in the photocatalytic water disassociation process. Herein, we suggest a novel 2D/2D vdW heterobilayer consisting of silicon carbide (SiC) and aluminum nitride (AlN) as an exciting photocatalyst for solar-to-hydrogen conversion reactions using first-principles calculations. Notably, the heterostructure presents an inherent type-II band orientation wherein the photogenic holes and electrons are spatially separated in the SiC layer and the AlN layer, respectively. Our results indicate that the SiC/AlN heterostructure occupies a suitable band-gap of 2.97 eV which straddles the kinetic overpotentials of the hydrogen production reaction and oxygen production reaction. Importantly, the built-in electric field at the interface created by substantial charge transfer prohibits carrier recombination and further improves the photocatalytic performance. The heterostructure has an ample absorption profile ranging from the ultraviolet to the near-infrared regime, while the intensity of the absorption reaches up to 2.16 × 105 cm-1. In addition, external strain modulates the optical absorption of the heterostructure effectively. This work provides an intriguing insight into the important features of the SiC/AlN heterostructure and renders useful information on the experimental design of a novel vdW heterostructure for solar energy-driven water disassociation with superior efficiency.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...