Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromolecules ; 49(20): 7897-7907, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27795581

RESUMO

Polymerization-induced self-assembly (PISA) is used to prepare linear poly(glycerol monomethacrylate)-poly(2-hydroxypropyl methacrylate)-poly(benzyl methacrylate) [PGMA-PHPMA-PBzMA] triblock copolymer nano-objects in the form of a concentrated aqueous dispersion via a three-step synthesis based on reversible addition-fragmentation chain transfer (RAFT) polymerization. First, GMA is polymerized via RAFT solution polymerization in ethanol, then HPMA is polymerized via RAFT aqueous solution polymerization, and finally BzMA is polymerized via "seeded" RAFT aqueous emulsion polymerization. For certain block compositions, highly anisotropic worm-like particles are obtained, which are characterized by small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM). The design rules for accessing higher order morphologies (i.e., worms or vesicles) are briefly explored. Surprisingly, vesicular morphologies cannot be accessed by targeting longer PBzMA blocks-instead, only spherical nanoparticles are formed. SAXS is used to rationalize these counterintuitive observations, which are best explained by considering subtle changes in the relative enthalpic incompatibilities between the three blocks during the growth of the PBzMA block. Finally, the PGMA-PHPMA-PBzMA worms are evaluated as Pickering emulsifiers for the stabilization of oil-in-water emulsions. Millimeter-sized oil droplets can be obtained using low-shear homogenization (hand-shaking) in the presence of 20 vol % n-dodecane. In contrast, control experiments performed using PGMA-PHPMA diblock copolymer worms indicate that these more delicate nanostructures do not survive even these mild conditions.

2.
Langmuir ; 28(1): 314-20, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22103933

RESUMO

The in situ surface activation of raw CaCO(3) nanoparticles by interaction with a series of sodium carboxylates of chain length between 6 and 12 as well as sodium 2-ethylhexylsulfosuccinate (AOT) was studied, and the impact of this on the stabilization and phase inversion of toluene-water emulsions was assessed. By using complementary experiments including measurement of particle zeta potentials, adsorption isotherms of amphiphile, and relevant contact angles, the mechanism of this activation was revealed. The results show that hydrophilic CaCO(3) nanoparticles can be surface activated by interaction with sodium carboxylates and AOT even if they are not surface-active themselves. Both the electrostatic interaction between the positive charges on particle surfaces and the negative charges of anionic amphiphile headgroups and the chain-chain interactions of the amphiphile result in monolayer adsorption of the amphiphile at the particle-water interface. This transforms the particles from hydrophilic to partially hydrophobic such that they become surface-active and stabilize oil-in-water O/W(1) emulsions and induce O/W(1) → water-in-oil W/O phase inversion, depending on the chain length of the carboxylate molecules. At high amphiphile concentration, bilayer or hemimicelle adsorption may occur at the particle-water surface, rendering particles hydrophilic again and causing their desorption from the oil-water interface. A second phase inversion, W/O → O/W(2), may occur depending on the surface activity of the amphiphile. CaCO(3) nanoparticles can therefore be made good stabilizers of both O/W and W/O emulsions once surface activated by mixing with traces of suitable anionic amphiphile.

3.
Langmuir ; 26(15): 12567-74, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20608686

RESUMO

The in situ surface activation of unmodified CaCO(3) nanoparticles by interaction with surfactant in aqueous media has been studied, and the impact of this on the foamability and foam stability of aqueous dispersions was assessed. Using complementary experiments including measurement of particle zeta potentials, adsorption isotherms of surfactant, air-water surface tensions, and relevant contact angles, the mechanism of this activation was revealed. The results show that the non-surface-active CaCO(3) nanoparticles cannot be surface activated by interaction with cationic or nonionic surfactants but can be surface activated by interaction with anionic surfactants such as SDS and AOT, leading to a synergistic effect in both foamability and foam stability. The electrostatic interaction between the positive charges on particle surfaces and the negative charges of anionic surfactant headgroups results in monolayer adsorption of the surfactant at the particle-water interface and transforms the particles from hydrophilic to partially hydrophobic such that particles become surface active and stabilize bubbles. SDS is a more efficient surfactant for this surface activation than AOT. Possible reasons for this difference are suggested.

4.
Eur Phys J E Soft Matter ; 31(2): 125-34, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20151313

RESUMO

We have investigated the rheological behaviour of silica nanoparticle layers at the air-water interface. Both compressed and deposited layers have been studied in Langmuir troughs and with a bicone rheometer. The compressed layers are more homogeneous and rigid, and the elastic response to continuous, step and oscillatory compression are similar, provided the compression is fast enough and relaxation is prevented. The deposited layers are less rigid and more viscoelastic. Their shear moduli deduced from the oscillatory uniaxial compression are much smaller than those deduced from pure shear deformation suggesting that the effective shear rate is smaller than expected in the compression measurements.


Assuntos
Ar , Modelos Químicos , Modelos Moleculares , Nanopartículas/química , Dióxido de Silício/química , Água/química , Adsorção , Simulação por Computador , Módulo de Elasticidade , Propriedades de Superfície , Viscosidade
5.
Langmuir ; 26(7): 4717-24, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-19950938

RESUMO

Silica nanoparticles without any surface modification are not surface active at the toluene-water interface due to their extreme hydrophilicity but can be surface activated in situ by adsorbing cationic surfactant from water. This work investigates the effects of the molecular structure of water-soluble cationic surfactant on the surface activation of the nanoparticles by emulsion characterization, adsorption and zeta potential measurements, dispersion stability experiments, and determination of relevant contact angles. The results show that an adsorbed cationic surfactant monolayer on particle surfaces is responsible for the wettability modification of the particles. In the presence of a trace amount of cationic surfactant, the hydrophobicity of the particles increases, leading to the formation of stable oil-in-water O/W(1) emulsions. At high surfactant concentration (>cmc) the particle surface is retransformed to hydrophilic due to double-layer or hemimicelle formation, and the concentration of the free surfactant in the aqueous phase is high enough to stabilize emulsions alone. O/W(2) emulsions, probably costabilized by free surfactant and particles, are then formed. The monolayer adsorption seems to be charge-site dependent. Thus, using single-chain trimethylammonium bromide surfactants or a double-head gemini cationic surfactant, the hydrophobicity of the particles achieved is not sufficient to stabilize water-in-oil (W/O) emulsions, and no phase inversion is induced. However, using a double-chain cationic surfactant, the chain density on the particle surfaces endows them with a hydrophobicity high enough to stabilize W/O emulsions, and double phase inversion, O/W(1) --> W/O --> O/W(2), can then be achieved by increasing the surfactant concentration.

6.
Soft Matter ; 4(7): 1531-1535, 2008 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32907121

RESUMO

We have performed a quantitative study of the coarsening of foams stabilised by partially hydrophobic silica nanoparticles. We have used a variety of techniques: optical and electron microscopy, microfluidics, and multiple light scattering. Using earlier studies of planar particle monolayers, we have been able to correlate the interfacial properties and the macroscopic temporal evolution of the foam. This has shed light on the origin of the absence of coarsening of particle-stabilised foams. Such particle-stabilised foams appear to be the only known foam system where coarsening is inhibited by surface elasticity.

8.
Langmuir ; 23(23): 11546-53, 2007 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-17918972

RESUMO

This article describes a study of fumed silica particle layers adsorbed at the air-water interface. We have performed surface pressure, ellipsometry, and Brewster angle microscopy measurements. These determinations were complemented by surface viscoelasticity studies, using capillary waves to measure the compression moduli and an oscillating disc to measure the shear moduli. Our results show a strong influence of the particle hydrophobicity and surface density on the properties of the layers. Under compression-expansion, the particle layers rearrange quasi-instantaneously, and at high density, they buckle and/or collapse. Shear measurements show a transition from viscous to elastic behavior for particles with contact angles close to 90 degrees. The surface compression moduli are quite small and most likely not related to the stability of the foams made with these particles, in contrast to the case of more common surfactant foams.

9.
Langmuir ; 22(9): 4100-3, 2006 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-16618150

RESUMO

We have investigated the mechanism of the spontaneous growth of a gold nanoparticle film on a container wall when an aqueous dispersion of gold nanoparticles is shaken with an oil phase containing octadecylamine, as first described by Mayya and Sastry (Mayya, K. S.; Sastry, M. Langmuir 1999, 15, 1902.). Experimental evidence is described, which shows that the film growth is driven by the coalescence of particle-coated emulsion drops with the flat oil-water interface separating the oil and water phases.

10.
Langmuir ; 22(4): 1664-70, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460089

RESUMO

We have used an optical transmission microscope equipped with a digital camera and fitted with a narrow-band-pass filter to obtain absorbance images consisting of an array of pixel absorbance values. Absorbance images of films of carbon nanoparticles were used to derive spatially resolved images of the carbon film thicknesses with a resolution in the thickness dimension of a few nanometers. The technique was applied to the characterization of carbon nanoparticle films at cellulose-coated glass surfaces and at the oil-water interfaces of emulsion drops. For the emulsions, it was necessary to use oil and water phases of equal refractive index to avoid artifacts due to the drops acting as lenses.

11.
Langmuir ; 21(18): 8161-7, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16114917

RESUMO

We have investigated the potential of utilizing naturally occurring spore particles of Lycopodium clavatum as sole emulsifiers of oil and water mixtures. The preferred emulsions, prepared from either oil-borne or aqueous-borne dispersions of the monodispersed particles of diameter 30 microm, are oil-in-water. The particles act as efficient stabilizers for oils of different polarity. Droplets as large as several millimeters are stable to coalescence indefinitely, despite the low coverage of interfaces by particles observed microscopically. Consistent with the emulsion findings, we discover that particles spontaneously adsorb to bare oil-water interfaces of single drops from oil dispersions, whereas adsorption is less spontaneous and extensive from aqueous dispersions. Monolayers of the spore particles at both air-water and oil-water planar interfaces contain particles in an aggregated state forming clusters and chains. The influence of particle concentration, oil/water ratio, and additives in the aqueous phase is studied.

12.
Langmuir ; 20(6): 2069-74, 2004 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-15835653

RESUMO

We have investigated the rate of water evaporation from concentrated oil-in-water (o/w) emulsions containing an involatile oil. Evaporation of the water continuous phase causes compression of the emulsion with progressive distortion of the oil drops and thinning of the water films separating them. Theoretically, the vapor pressure of water is sensitive to the interdroplet interactions, which are a function of the film thickness. Three main possible situations are considered. First, under conditions when the evaporation rate is controlled by mass transfer across the stagnant vapor phase, model calculations show that evaporation can, in principle, be slowed by repulsive interdroplet interactions. However, significant retardation requires very strong repulsive forces acting over large separations for typical emulsion drop sizes. Second, water evaporation may be limited by diffusion in the network of water films within the emulsion. In this situation, water loss by evaporation from the emulsion surface leads to a gradient in the water concentration (and in the water film thickness). Third, compression of the drops may lead to coalescence of the emulsion drops and the formation of a macroscopic oil film at the emulsion surface, which serves to prevent further water evaporation. Water mass-loss curves have been measured for silicone o/w emulsions stabilized by the anionic surfactant SDS as a function of the water content, the thickness of the stagnant vapor-phase layer, and the concentration of electrolyte in the aqueous phase, and the results are discussed in terms of the three possible scenarios just described. In systems with added salt, water evaporation virtually ceases before all the water present is lost, probably as a result of oil-drop coalescence resulting in the formation of a water-impermeable oil film at the emulsion surface.

13.
Langmuir ; 20(11): 4345-54, 2004 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-15969137

RESUMO

2-(Dimethylamino)ethyl methacrylate (DMA) was block copolymerized with methyl methacrylate (MMA) using group transfer polymerization to give four AB diblock, ABA triblock, and BAB triblock copolymers of low polydispersity (Mw/Mn < 1.20). In addition, a near-monodisperse styrene-functionalized DMA-based macromonomer was synthesized via oxyanionic polymerization using a potassium 4-vinylbenzyl alcoholate initiator. These five well-defined, tertiary amine methacrylate-based copolymers were evaluated as steric stabilizers for the synthesis of polystyrene latexes via emulsion and dispersion polymerization. The most efficient steric stabilizers proved to be the DMA-MMA diblock copolymer and the DMA-based macromonomer. The polystyrene latexes were characterized in terms of their particle size and morphology, stabilizer content, surface charge, and surface activity using dynamic light scattering, scanning electron microscopy, 1H NMR spectroscopy, aqueous electrophoresis measurements, and surface tensiometry, respectively. The pH-dependent surface activity exhibited by selected latexes suggests potential applications as stimulus-responsive particulate emulsifiers for oil-in-water emulsions.

14.
Chem Commun (Camb) ; (15): 1826-7, 2003 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-12931986

RESUMO

A pH-responsive, sterically-stabilised polystyrene latex is used as a particulate emulsifier for oil-in-water emulsions; demulsification occurs rapidly on lowering the solution pH and the original emulsion can be reformed on pH cycling.

15.
Eur Phys J E Soft Matter ; 11(3): 273-281, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15011047

RESUMO

We produce direct and inverse emulsions stabilized by solid mineral particles. If the total amount of particles is initially insufficient to fully cover the oil-water interfaces, the emulsion droplets coalesce such that the total interfacial area between oil and water is progressively reduced. Since it is likely that the particles are irreversibly adsorbed, the degree of surface coverage by them increases until coalescence is halted. We follow the rate of droplet coalescence from the initial fragmented state to the saturated situation. Unlike surfactant-stabilized emulsions, the coalescence frequency depends on time and particle concentration. Both the transient and final droplet size distributions are relatively narrow and we obtain a linear relation between the inverse average droplet diameter and the total amount of solid particles, with a slope that depends on the mixing intensity. The phenomenology is independent of the mixing type and of the droplet volume fraction allowing the fabrication of both direct and inverse emulsion with average droplet sizes ranging from micron to millimetre.


Assuntos
Emulsões/química , Adsorção , Fenômenos Biofísicos , Biofísica , Química Farmacêutica/métodos , Cinética , Microscopia Eletrônica , Óleos , Tensoativos/química , Fatores de Tempo
16.
Phys Rev Lett ; 88(24): 246102, 2002 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-12059318

RESUMO

Using a laser tweezers method, we have determined the long-range repulsive force as a function of separation between two charged, spherical polystyrene particles (2.7 microm diameter) present at a nonpolar oil-water interface. At large separations (6 to 12 microm between particle centers) the force is found to decay with distance to the power -4 and is insensitive to the ionic strength of the aqueous phase. The results are consistent with a model in which the repulsion arises primarily from the presence of a very small residual electric charge at the particle-oil interface. This charge corresponds to a fractional dissociation of the total ionizable (sulfate) groups present at the particle-oil surface of approximately 3 x 10(-4).

17.
Biophys J ; 55(5): 949-55, 1989 May.
Artigo em Inglês | MEDLINE | ID: mdl-2470431

RESUMO

The Folch-Pi proteolipid is the most abundant structural protein from the central nervous system myelin. This protein-lipid complex, normally insoluble in water, requires only a small amount of water for solubilization in reverse micelles of sodium bis (2-ethylhexyl) sulfosuccinate (AOT) in isooctane. The characterization of the proteolipid-free and proteolipid-containing micelles was undertaken by light scattering and fluorescence recovery after fringe pattern photobleaching (FRAPP) experiments. Quasi elastic light scattering (QELS) was carried out at a high (200 mM) AOT concentration, at low water-to-surfactant mole ratio (Wo = 7) and at increasing protein occupancy. Two apparent hydrodynamic radii, differing tenfold in size, were obtained from correlation functions. The smaller one (RaH = 5.2 nm) remains constant and corresponds to that measured for protein-free micelles. The larger one increases linearly with protein concentration. In contrast, FRAPP measurements of self-diffusion coefficients were found unaffected by the proteolipid concentration. Accordingly, they have been performed at constant protein/surfactant mole ratios. The equivalent RH, extrapolated to zero AOT concentration for protein-free reverse micelles (2.9 nm) and in the presence of the proteolipid (4.6 nm), do not reveal the mode of organization previously suggested by QELS measurements. The complex picture emerging from this work represents a first step in the characterization of an integral membrane protein in reverse micelles.


Assuntos
Proteínas da Mielina , Fluoresceína-5-Isotiocianato , Fluoresceínas , Corantes Fluorescentes , Luz , Micelas , Modelos Estruturais , Proteína Proteolipídica de Mielina , Fotoquímica , Conformação Proteica , Espalhamento de Radiação , Tiocianatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...