Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16936, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413324

RESUMO

The COVID-19 pandemic has created an urgent need for robust, scalable monitoring tools supporting stratification of high-risk patients. This research aims to develop and validate prediction models, using the UK Biobank, to estimate COVID-19 mortality risk in confirmed cases. From the 11,245 participants testing positive for COVID-19, we develop a data-driven random forest classification model with excellent performance (AUC: 0.91), using baseline characteristics, pre-existing conditions, symptoms, and vital signs, such that the score could dynamically assess mortality risk with disease deterioration. We also identify several significant novel predictors of COVID-19 mortality with equivalent or greater predictive value than established high-risk comorbidities, such as detailed anthropometrics and prior acute kidney failure, urinary tract infection, and pneumonias. The model design and feature selection enables utility in outpatient settings. Possible applications include supporting individual-level risk profiling and monitoring disease progression across patients with COVID-19 at-scale, especially in hospital-at-home settings.


Assuntos
COVID-19/epidemiologia , Modelos Estatísticos , SARS-CoV-2/fisiologia , Idoso , Idoso de 80 Anos ou mais , Bancos de Espécimes Biológicos , COVID-19/mortalidade , Estudos de Coortes , Comorbidade , Feminino , Humanos , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Pandemias , Prognóstico , Fatores de Risco , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...