Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 27(20): 28998-29015, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684642

RESUMO

In this paper, we introduce a pulse characterization technique that is free of phase-matching constraints, exploiting transient absorption in solids as an ultrafast optical switch. Based on a pump-probe setup, this technique uses pump pulses of sufficient intensity to induce the switch, while the pulses to characterize are probing the transmissivity drop of the photoexcited material. This enables the characterization of low-intensity ultra-broadband pulses at the detection limit of the spectrometer and within the transparency range of the solid. For example, by using zinc selenide (ZnSe), pulses with wavelengths from 0.5 to 20 µm can be characterized, denoting five octaves of spectral range. Using ptychography, we retrieve the temporal profiles of both the probe pulse and the switch. To demonstrate this approach, we measure ultrashort pulses from a titanium-sapphire (Ti-Sa) amplifier, which are compressed using a hollow core fiber setup, as well as infrared to mid-infrared pulses generated from an optical parametric amplifier (OPA). The characterized pulses are centered at wavelengths of 0.77, 1.53, 1.75, 4, and 10 µm, down to sub-two optical cycles duration, exceeding an octave of bandwidth, and with energy as low as a few nanojoules.

2.
Opt Express ; 25(22): 27706-27714, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-29092241

RESUMO

Broadband optical parametric amplification in the IR region has reached a new milestone through the use of a non-collinear Frequency domain Optical Parametric Amplification system. We report a laser source delivering 11.6 fs pulses with 30 mJ of energy at a central wavelength of 1.8 µm at 10 Hz repetition rate corresponding to a peak power of 2.5 TW. The peak power scaling is accompanied by a pulse shortening of about 20% upon amplification due to the spectral reshaping with higher gain in the spectral wings. This source paves the way for high flux soft X-ray pulses and IR-driven laser wakefield acceleration.

3.
Ultramicroscopy ; 159 Pt 2: 152-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25498140

RESUMO

We present the first demonstration of ultrafast laser-induced field emission and measurement of the energy distribution of electrons from a nanotip based on a carbon nanotube (CNT). Our experimental setup extends the studies performed on conventional tungsten or gold tips by using this new innovative tip. The carbon tip consists of concentric carbon layers in the shape of a cone, and has been previously studied as a very good candidate for cold field emission. The first laser-induced field emission from a CNT-based nanotip has been observed and we measured the energy spectrum as well as the polarization dependance of the emission. We also characterize the damage threshold of the tip, when illuminated by a high repetition rate femtosecond laser. These first results are encouraging further studies of electron emission from CNT-based carbon nanotips.

4.
Rev Sci Instrum ; 85(8): 083116, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25173255

RESUMO

The advent of few femtosecond x-ray light sources brings promise of x-ray/optical pump-probe experiments that can measure chemical and structural changes in the 10-100 fs time regime. Widely distributed timing systems used at x-ray Free-Electron Laser facilities are typically limited to above 50 fs fwhm jitter in active x-ray/optical synchronization. The approach of single-shot timing measurements is used to sort results in the event processing stage. This has seen wide use to accommodate the insufficient precision of active stabilization schemes. In this article, we review the current technique for "measure-and-sort" at the Linac Coherent Light Source at the SLAC National Accelerator Laboratory. The relative arrival time between an x-ray pulse and an optical pulse is measured near the experimental interaction region as a spectrally encoded cross-correlation signal. The cross-correlation provides a time-stamp for filter-and-sort algorithms used for real-time sorting. Sub-10 fs rms resolution is common in this technique, placing timing precision at the same scale as the duration of the shortest achievable x-ray pulses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...