Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(8)2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37197981

RESUMO

Connexin37-mediated regulation of cell cycle modulators and, consequently, growth arrest lack mechanistic understanding. We previously showed that arterial shear stress up-regulates Cx37 in endothelial cells and activates a Notch/Cx37/p27 signaling axis to promote G1 cell cycle arrest, and this is required to enable arterial gene expression. However, how induced expression of a gap junction protein, Cx37, up-regulates cyclin-dependent kinase inhibitor p27 to enable endothelial growth suppression and arterial specification is unclear. Herein, we fill this knowledge gap by expressing wild-type and regulatory domain mutants of Cx37 in cultured endothelial cells expressing the Fucci cell cycle reporter. We determined that both the channel-forming and cytoplasmic tail domains of Cx37 are required for p27 up-regulation and late G1 arrest. Mechanistically, the cytoplasmic tail domain of Cx37 interacts with, and sequesters, activated ERK in the cytoplasm. This then stabilizes pERK nuclear target Foxo3a, which up-regulates p27 transcription. Consistent with previous studies, we found this Cx37/pERK/Foxo3a/p27 signaling axis functions downstream of arterial shear stress to promote endothelial late G1 state and enable up-regulation of arterial genes.


Assuntos
Conexinas , Células Endoteliais , Células Endoteliais/metabolismo , Pontos de Checagem do Ciclo Celular/genética , Conexinas/genética , Conexinas/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Núcleo Celular/metabolismo , Proteína alfa-4 de Junções Comunicantes
2.
Cell Rep ; 42(4): 112371, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37043357

RESUMO

The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence. This is further supported by single-cell RNA sequencing and in vitro studies showing that ECs control NSC proliferation by regulating expression of genes associated with NSC quiescence and/or activation in a Cx43-dependent manner. Cx43 mediates these effects in a channel-independent manner involving its cytoplasmic tail and ERK activation. Such insights inform adult NSC regulation and maintenance aimed at stem cell therapies for neurodegenerative disorders.


Assuntos
Conexina 43 , Ventrículos Laterais , Células Endoteliais/metabolismo , Encéfalo/metabolismo , Neurogênese/fisiologia
3.
RNA Biol ; 19(1): 1228-1243, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457147

RESUMO

Endothelial cells (ECs) comprise the lumenal lining of all blood vessels and are critical for the functioning of the cardiovascular system. Their phenotypes can be modulated by alternative splicing of RNA to produce distinct protein isoforms. To characterize the RNA and protein isoform landscape within ECs, we applied a long read proteogenomics approach to analyse human umbilical vein endothelial cells (HUVECs). Transcripts delineated from PacBio sequencing serve as the basis for a sample-specific protein database used for downstream mass-spectrometry (MS) analysis to infer protein isoform expression. We detected 53,863 transcript isoforms from 10,426 genes, with 22,195 of those transcripts being novel. Furthermore, the predominant isoform in HUVECs does not correspond with the accepted "reference isoform" 25% of the time, with vascular pathway-related genes among this group. We found 2,597 protein isoforms supported through unique peptides, with an additional 2,280 isoforms nominated upon incorporation of long-read transcript evidence. We characterized a novel alternative acceptor for endothelial-related gene CDH5, suggesting potential changes in its associated signalling pathways. Finally, we identified novel protein isoforms arising from a diversity of RNA splicing mechanisms supported by uniquely mapped novel peptides. Our results represent a high-resolution atlas of known and novel isoforms of potential relevance to endothelial phenotypes and function.[Figure: see text].


Assuntos
Proteogenômica , Humanos , Células Endoteliais da Veia Umbilical Humana , Isoformas de Proteínas/genética , Processamento Alternativo , RNA
5.
Nat Commun ; 13(1): 5891, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202789

RESUMO

During blood vessel development, endothelial cells become specified toward arterial or venous fates to generate a circulatory network that provides nutrients and oxygen to, and removes metabolic waste from, all tissues. Arterial-venous specification occurs in conjunction with suppression of endothelial cell cycle progression; however, the mechanistic role of cell cycle state is unknown. Herein, using Cdh5-CreERT2;R26FUCCI2aR reporter mice, we find that venous endothelial cells are enriched for the FUCCI-Negative state (early G1) and BMP signaling, while arterial endothelial cells are enriched for the FUCCI-Red state (late G1) and TGF-ß signaling. Furthermore, early G1 state is essential for BMP4-induced venous gene expression, whereas late G1 state is essential for TGF-ß1-induced arterial gene expression. Pharmacologically induced cell cycle arrest prevents arterial-venous specification defects in mice with endothelial hyperproliferation. Collectively, our results show that distinct endothelial cell cycle states provide distinct windows of opportunity for the molecular induction of arterial vs. venous fate.


Assuntos
Células Endoteliais , Fator de Crescimento Transformador beta1 , Animais , Artérias/metabolismo , Ciclo Celular , Células Endoteliais/metabolismo , Camundongos , Oxigênio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Veias
6.
J Biomech ; 121: 110409, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33845355

RESUMO

Heterotypic cell lineages relentlessly exchange biomechanical signals among themselves in metazoan organs. Hence, cell-cell communications are pivotal for organ physiology and pathogenesis. Every cell lineage of an organ responds differently to a specific signal due to its unique receptibility and signal interpretation capacity. These distinct cellular responses generate a system-scale signaling network that helps in generating a specific organ phenotype. Although the reciprocal biochemical signal exchange between non-identical neighboring cells is known to be an essential factor for organ functioning, if, then how, mechanical cues incite these signals is not yet quite explored. Cells within organ tissues experience multiple mechanical forces, such as stretching, bending, compression, and shear stress. Forms and magnitudes of mechanical forces influence biochemical signaling in a cell-specific manner. Additionally, the biophysical state of acellular extracellular matrix (ECM) can transmit exclusive mechanical cues to specific cells of an organ. As it scaffolds heterotypic cells and tissues in close proximities, therefore, ECM can easily be contemplated as a mechanical conduit for signal exchange among them. However, force-stimulated signal transduction is not always physiological, aberrant force sensing by tissue-resident cells can transduce anomalous signals to each other, and potentially can promote pathological phenotypes. Herein, I attempt to put forward a perspective on how mechanical forces may influence signal transductions among heterotypic cell populations and how they feedback each other to achieve a transient or perpetual alteration in metazoan organs. A mechanistic insight of organ scale mechanotransduction can emanate the possibility of finding potential biomarkers and novel therapeutic strategies to deal with pathogenesis and organ regeneration.


Assuntos
Comunicação Celular , Mecanotransdução Celular , Animais , Matriz Extracelular , Fenômenos Mecânicos , Estresse Mecânico
7.
Dev Cell ; 54(1): 75-91.e7, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32485139

RESUMO

Epithelia are active materials where mechanical tension governs morphogenesis and homeostasis. But how that tension is regulated remains incompletely understood. We now report that caveolae control epithelial tension and show that this is necessary for oncogene-transfected cells to be eliminated by apical extrusion. Depletion of caveolin-1 (CAV1) increased steady-state tensile stresses in epithelial monolayers. As a result, loss of CAV1 in the epithelial cells surrounding oncogene-expressing cells prevented their apical extrusion. Epithelial tension in CAV1-depleted monolayers was increased by cortical contractility at adherens junctions. This reflected a signaling pathway, where elevated levels of phosphoinositide-4,5-bisphosphate (PtdIns(4,5)P2) recruited the formin, FMNL2, to promote F-actin bundling. Steady-state monolayer tension and oncogenic extrusion were restored to CAV1-depleted monolayers when tension was corrected by depleting FMNL2, blocking PtdIns(4,5)P2, or disabling the interaction between FMNL2 and PtdIns(4,5)P2. Thus, caveolae can regulate active mechanical tension for epithelial homeostasis by controlling lipid signaling to the actin cytoskeleton.


Assuntos
Cavéolas/metabolismo , Células Epiteliais/metabolismo , Proteínas Oncogênicas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Células CACO-2 , Caveolina 1/metabolismo , Células Epiteliais/ultraestrutura , Forminas/metabolismo , Células HEK293 , Humanos , Masculino , Camundongos , Proteínas Oncogênicas/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Estresse Mecânico
8.
Dev Cell ; 47(4): 439-452.e6, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30318244

RESUMO

Adherens junctions are tensile structures that couple epithelial cells together. Junctional tension can arise from cell-intrinsic application of contractility or from the cell-extrinsic forces of tissue movement. Here, we report a mechanosensitive signaling pathway that activates RhoA at adherens junctions to preserve epithelial integrity in response to acute tensile stress. We identify Myosin VI as the force sensor, whose association with E-cadherin is enhanced when junctional tension is increased by mechanical monolayer stress. Myosin VI promotes recruitment of the heterotrimeric Gα12 protein to E-cadherin, where it signals for p114 RhoGEF to activate RhoA. Despite its potential to stimulate junctional actomyosin and further increase contractility, tension-activated RhoA signaling is necessary to preserve epithelial integrity. This is explained by an increase in tensile strength, especially at the multicellular vertices of junctions, that is due to mDia1-mediated actin assembly.


Assuntos
Junções Aderentes/metabolismo , Células Epiteliais/metabolismo , Epitélio/metabolismo , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Caderinas/metabolismo , Humanos , Resistência à Tração
9.
APL Bioeng ; 2(2): 026111, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31069308

RESUMO

We report an experimental approach to study the mechanosensitivity of cell-cell contact upon mechanical stimulation in suspended cell-doublets. The doublet is placed astride an hourglass aperture, and a hydrodynamic force is selectively exerted on only one of the cells. The geometry of the device concentrates the mechanical shear over the junction area. Together with mechanical shear, the system also allows confocal quantitative live imaging of the recruitment of junction proteins (e.g., E-cadherin, ZO-1, occludin, and actin). We observed the time sequence over which proteins were recruited to the stretched region of the contact. The compressed side of the contact showed no response. We demonstrated how this mechanism polarizes the stress-induced recruitment of junctional components within one single junction. Finally, we demonstrated that stabilizing the actin cortex dynamics abolishes the mechanosensitive response of the junction. Our experimental design provides an original approach to study the role of mechanical force at a cell-cell contact with unprecedented control over stress application and quantitative optical analysis.

10.
PLoS Comput Biol ; 13(3): e1005411, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273072

RESUMO

Mechanical coherence of cell layers is essential for epithelia to function as tissue barriers and to control active tissue dynamics during morphogenesis. RhoA signaling at adherens junctions plays a key role in this process by coupling cadherin-based cell-cell adhesion together with actomyosin contractility. Here we propose and analyze a mathematical model representing core interactions involved in the spatial localization of junctional RhoA signaling. We demonstrate how the interplay between biochemical signaling through positive feedback, combined with diffusion on the cell membrane and mechanical forces generated in the cortex, can determine the spatial distribution of RhoA signaling at cell-cell junctions. This dynamical mechanism relies on the balance between a propagating bistable signal that is opposed by an advective flow generated by an actomyosin stress gradient. Experimental observations on the behavior of the system when contractility is inhibited are in qualitative agreement with the predictions of the model.


Assuntos
Actomiosina/fisiologia , Junções Aderentes/fisiologia , Células Epiteliais/fisiologia , Mecanotransdução Celular/fisiologia , Contração Muscular/fisiologia , Proteína rhoA de Ligação ao GTP/fisiologia , Actomiosina/química , Junções Aderentes/química , Animais , Simulação por Computador , Células Epiteliais/química , Humanos , Modelos Biológicos , Proteínas Motores Moleculares/química , Proteínas Motores Moleculares/fisiologia , Estresse Mecânico , Proteína rhoA de Ligação ao GTP/química
11.
Cell Rep ; 18(12): 2854-2867, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28329679

RESUMO

Formins are a diverse class of actin regulators that influence filament dynamics and organization. Several formins have been identified at epithelial adherens junctions, but their functional impact remains incompletely understood. Here, we tested the hypothesis that formins might affect epithelial interactions through junctional contractility. We focused on mDia1, which was recruited to the zonula adherens (ZA) of established Caco-2 monolayers in response to E-cadherin and RhoA. mDia1 was necessary for contractility at the ZA, measured by assays that include a FRET-based sensor that reports molecular-level tension across αE-catenin. This reflected a role in reorganizing F-actin networks to form stable bundles that resisted myosin-induced stress. Finally, we found that the impact of mDia1 ramified beyond adherens junctions to stabilize tight junctions and maintain the epithelial permeability barrier. Therefore, control of tissue barrier function constitutes a pathway for cadherin-based contractility to contribute to the physiology of established epithelia.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Junções Aderentes/metabolismo , Caderinas/metabolismo , Epitélio/metabolismo , Mamíferos/metabolismo , Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Animais , Antígenos CD , Células CACO-2 , Proteínas Fetais/metabolismo , Forminas , Técnicas de Silenciamento de Genes , Humanos , Proteínas dos Microfilamentos/metabolismo , Miosina Tipo II/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Reprodutibilidade dos Testes , Estresse Fisiológico , Junções Íntimas/metabolismo , alfa Catenina
12.
EBioMedicine ; 6: 59-72, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27211549

RESUMO

We have previously reported that RORγ expression was decreased in ER-ve breast cancer, and increased expression improves clinical outcomes. However, the underlying RORγ dependent mechanisms that repress breast carcinogenesis have not been elucidated. Here we report that RORγ negatively regulates the oncogenic TGF-ß/EMT and mammary stem cell (MaSC) pathways, whereas RORγ positively regulates DNA-repair. We demonstrate that RORγ expression is: (i) decreased in basal-like subtype cancers, and (ii) inversely correlated with histological grade and drivers of carcinogenesis in breast cancer cohorts. Furthermore, integration of RNA-seq and ChIP-chip data reveals that RORγ regulates the expression of many genes involved in TGF-ß/EMT-signaling, DNA-repair and MaSC pathways (including the non-coding RNA, LINC00511). In accordance, pharmacological studies demonstrate that an RORγ agonist suppresses breast cancer cell viability, migration, the EMT transition (microsphere outgrowth) and mammosphere-growth. In contrast, RNA-seq demonstrates an RORγ inverse agonist induces TGF-ß/EMT-signaling. These findings suggest pharmacological modulation of RORγ activity may have utility in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Reparo do DNA , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Fator de Crescimento Transformador beta/genética , Benzamidas/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Células MCF-7 , Metástase Neoplásica , Piperazinas/farmacologia , Propanóis/farmacologia , Análise de Sequência de RNA , Transdução de Sinais
13.
Dev Cell ; 37(1): 58-71, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27046832

RESUMO

In this study we sought to identify how contractility at adherens junctions influences apoptotic cell extrusion. We first found that the generation of effective contractility at steady-state junctions entails a process of architectural reorganization whereby filaments that are initially generated as poorly organized networks of short bundles are then converted into co-aligned perijunctional bundles. Reorganization requires coronin 1B, which is recruited to junctions by E-cadherin adhesion and is necessary to establish contractile tension at the zonula adherens. When cells undergo apoptosis within an epithelial monolayer, coronin 1B is also recruited to the junctional cortex at the apoptotic/neighbor cell interface in an E-cadherin-dependent fashion to support actin architectural reorganization, contractility, and extrusion. We propose that contractile stress transmitted from the apoptotic cell through E-cadherin adhesions elicits a mechanosensitive response in neighbor cells that is necessary for the morphogenetic event of apoptotic extrusion to occur.


Assuntos
Actinas/metabolismo , Junções Aderentes/metabolismo , Apoptose/fisiologia , Proteínas dos Microfilamentos/metabolismo , Contração Muscular/fisiologia , Citoesqueleto de Actina/metabolismo , Junções Aderentes/fisiologia , Células CACO-2 , Caderinas/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Humanos , Proteínas dos Microfilamentos/genética , Interferência de RNA , RNA Interferente Pequeno/genética
14.
J Cell Biol ; 213(2): 243-60, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27114502

RESUMO

Morphogenesis requires dynamic coordination between cell-cell adhesion and the cytoskeleton to allow cells to change shape and move without losing tissue integrity. We used genetic tools and superresolution microscopy in a simple model epithelial cell line to define how the molecular architecture of cell-cell zonula adherens (ZA) is modified in response to elevated contractility, and how these cells maintain tissue integrity. We previously found that depleting zonula occludens 1 (ZO-1) family proteins in MDCK cells induces a highly organized contractile actomyosin array at the ZA. We find that ZO knockdown elevates contractility via a Shroom3/Rho-associated, coiled-coil containing protein kinase (ROCK) pathway. Our data suggest that each bicellular border is an independent contractile unit, with actin cables anchored end-on to cadherin complexes at tricellular junctions. Cells respond to elevated contractility by increasing junctional afadin. Although ZO/afadin knockdown did not prevent contractile array assembly, it dramatically altered cell shape and barrier function in response to elevated contractility. We propose that afadin acts as a robust protein scaffold that maintains ZA architecture at tricellular junctions.


Assuntos
Junções Aderentes/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas da Zônula de Oclusão/fisiologia , Citoesqueleto de Actina/metabolismo , Animais , Adesão Celular , Forma Celular , Citoesqueleto/metabolismo , Cães , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Técnicas de Silenciamento de Genes , Células Madin Darby de Rim Canino , Proteínas dos Microfilamentos/metabolismo , Morfogênese , Proteínas da Zônula de Oclusão/genética , Proteínas da Zônula de Oclusão/metabolismo
15.
Curr Top Dev Biol ; 117: 631-46, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26970005

RESUMO

Cellular contractility, driven by actomyosin networks coupled to cadherin cell-cell adhesion junctions, is a major determinant of cellular rearrangement during morphogenesis. It now emerges that contractility arises as the emergent property of a mechanochemical feedback system that encompasses the signals that regulate contractility and the elements of the actomyosin network itself.


Assuntos
Caderinas/metabolismo , Adesão Celular/fisiologia , Junções Intercelulares/fisiologia , Mecanotransdução Celular/fisiologia , Morfogênese/fisiologia , Contração Muscular/fisiologia , Actomiosina/metabolismo , Animais , Humanos
16.
J Cell Sci ; 129(5): 957-70, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26759174

RESUMO

The kinesin KIF17 localizes at microtubule plus-ends where it contributes to regulation of microtubule stabilization and epithelial polarization. We now show that KIF17 localizes at cell-cell adhesions and that KIF17 depletion inhibits accumulation of actin at the apical pole of cells grown in 3D organotypic cultures and alters the distribution of actin and E-cadherin in cells cultured in 2D on solid supports. Overexpression of full-length KIF17 constructs or truncation mutants containing the N-terminal motor domain resulted in accumulation of newly incorporated GFP-actin into junctional actin foci, cleared E-cadherin from cytoplasmic vesicles and stabilized cell-cell adhesions to challenge with calcium depletion. Expression of these KIF17 constructs also increased cellular levels of active RhoA, whereas active RhoA was diminished in KIF17-depleted cells. Inhibition of RhoA or its effector ROCK, or expression of LIMK1 kinase-dead or activated cofilin(S3A) inhibited KIF17-induced junctional actin accumulation. Interestingly, KIF17 activity toward actin depends on the motor domain but is independent of microtubule binding. Together, these data show that KIF17 can modify RhoA-GTPase signaling to influence junctional actin and the stability of the apical junctional complex of epithelial cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Células Epiteliais/fisiologia , Cinesinas/fisiologia , Proteína rhoA de Ligação ao GTP/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Animais , Antígenos CD , Caderinas/metabolismo , Adesão Celular , Cães , Células Epiteliais/ultraestrutura , Quinases Lim/metabolismo , Células Madin Darby de Rim Canino , Microtúbulos/metabolismo , Ligação Proteica , Transporte Proteico , Transdução de Sinais , Quinases Associadas a rho/metabolismo
17.
Biochimie ; 97: 78-91, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24113316

RESUMO

Microtubule-Targeting agents (MTA) are indispensable for cancer therapeutics. We here report thymoquinone (TQ) as a new MTA that already has been appreciated for its anticancer effects. TQ induced G2/M cell cycle arrest in human non-small lung epithelial cells (A549) and majority of arrested cells were in mitosis. TQ depolymerized the microtubule (MT) network and disrupted mitotic spindle organization of A549 cells. MT depolymerization by TQ was followed by apoptosis and subsequent loss in cell viability (IC50 value of ∼10 µM). Interestingly, TQ didn't affect the MT network of normal HUVEC cells at and below the IC50 concentration for A549 cells. TQ also inhibited tubulin polymerization in cell-free system with an IC50 of 27 µM and bound to tubulin heterodimers at a single site with a dissociation constant of 1.19 µM at 25 °C. Binding of TQ to tubulin quenched the tryptophan fluorescence of protein in a time-dependent manner. The TQ-tubulin binding kinetics was biphasic in nature and equilibrated in 30 min. TQ competed with colchicine for tubulin binding with a Ki of 1.9 µM as determined by modified Dixon plot analysis, this suggests TQ may bind tubulin at or near the colchicine binding site and in silico modeling study supported that. Our results establish a novel antimitotic mechanism of TQ by its direct binding to tubulin-MT network in A549 cells.


Assuntos
Benzoquinonas/farmacologia , Citostáticos/farmacologia , Células Epiteliais/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Mitose/efeitos dos fármacos , Moduladores de Tubulina/farmacologia , Apoptose/efeitos dos fármacos , Ligação Competitiva , Linhagem Celular Tumoral , Sistema Livre de Células , Colchicina/farmacologia , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Cinética , Especificidade de Órgãos , Polimerização , Espectrometria de Fluorescência , Fuso Acromático/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
18.
J Cell Biol ; 203(3): 445-55, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24189273

RESUMO

We showed previously that the kinesin-2 motor KIF17 regulates microtubule (MT) dynamics and organization to promote epithelial differentiation. How KIF17 activity is regulated during this process remains unclear. Several kinesins, including KIF17, adopt compact and extended conformations that reflect autoinhibited and active states, respectively. We designed biosensors of KIF17 to monitor its activity directly in single cells using fluorescence lifetime imaging to detect Förster resonance energy transfer. Lifetime data are mapped on a phasor plot, allowing us to resolve populations of active and inactive motors in individual cells. Using this biosensor, we demonstrate that PKC contributes to the activation of KIF17 and that this is required for KIF17 to stabilize MTs in epithelia. Furthermore, we show that EB1 recruits KIF17 to dynamic MTs, enabling its accumulation at MT ends and thus promoting MT stabilization at discrete cellular domains.


Assuntos
Técnicas Biossensoriais , Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína Quinase C/metabolismo , Animais , Linhagem Celular , Cães , Ativação Enzimática , Células Madin Darby de Rim Canino , Ligação Proteica
19.
J Biol Chem ; 288(45): 32302-32313, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24072717

RESUMO

KIF17 is a kinesin-2 family motor that interacts with EB1 at microtubule (MT) plus-ends and contributes to MT stabilization in epithelial cells. The mechanism by which KIF17 affects MTs and how its activity is regulated are not yet known. Here, we show that EB1 and the KIF17 autoinhibitory tail domain (KIF17-Tail) interacted competitively with the KIF17 catalytic motor domain (K370). Both EB1 and KIF17-Tail decreased the K0.5MT of K370, with opposing effects on MT-stimulated ATPase activity. Importantly, K370 had independent effects on MT dynamic instability, resulting in formation of long MTs without affecting polymerization rate or total polymer mass. K370 also inhibited MT depolymerization induced by dilution in vitro and by nocodazole in cells, suggesting that it acts by protecting MT plus-ends. Interestingly, KIF17-Tail bound MTs and tubulin dimers, delaying initial MT polymerization in vitro and MT regrowth in cells. However, neither EB1 nor KIF17-Tail affected K370-mediated MT polymerization or stabilization significantly in vitro, and EB1 was dispensable for MT stabilization by K370 in cells. Thus, although EB1 and KIF17-Tail may coordinate KIF17 catalytic activity, our data reveal a novel and direct role for KIF17 in regulating MT dynamics.


Assuntos
Cinesinas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Multimerização Proteica/fisiologia , Tubulina (Proteína)/metabolismo , Animais , Células CACO-2 , Catálise , Bovinos , Humanos , Cinesinas/química , Cinesinas/genética , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/genética , Microtúbulos/química , Microtúbulos/genética , Ligação Proteica , Estrutura Terciária de Proteína , Tubulina (Proteína)/química , Tubulina (Proteína)/genética
20.
Biochimie ; 95(6): 1297-309, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23485682

RESUMO

Apigenin, a natural flavone, present in many plants sources, induced apoptosis and cell death in lung epithelium cancer (A549) cells with an IC50 value of 93.7 ± 3.7 µM for 48 h treatment. Target identification investigations using A549 cells and also in cell-free system demonstrated that apigenin depolymerized microtubules and inhibited reassembly of cold depolymerized microtubules of A549 cells. Again apigenin inhibited polymerization of purified tubulin with an IC50 value of 79.8 ± 2.4 µM. It bounds to tubulin in cell-free system and quenched the intrinsic fluorescence of tubulin in a concentration- and time-dependent manner. The interaction was temperature-dependent and kinetics of binding was biphasic in nature with binding rate constants of 11.5 × 10(-7) M(-1) s(-1) and 4.0 × 10(-9) M(-1) s(-1) for fast and slow phases at 37 °C, respectively. The stoichiometry of tubulin-apigenin binding was 1:1 and binding the binding constant (Kd) was 6.08 ± 0.096 µM. Interestingly, apigenin showed synergistic anti-cancer effect with another natural anti-tubulin agent curcumin. Apigenin and curcumin synergistically induced cell death and apoptosis and also blocked cell cycle progression at G2/M phase of A549 cells. The synergistic activity of apigenin and curcumin was also apparent from their strong depolymerizing effects on interphase microtubules and inhibitory effect of reassembly of cold depolymerized microtubules when used in combinations, indicating that these ligands bind to tubulin at different sites. In silico modeling suggested apigenin bounds at the interphase of α-ß-subunit of tubulin. The binding site is 19 Å in distance from the previously predicted curcumin binding site. Binding studies with purified protein also showed both apigenin and curcumin can simultaneously bind to purified tubulin. Understanding the mechanism of synergistic effect of apigenin and curcumin could be helped to develop anti-cancer combination drugs from cheap and readily available nutraceuticals.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Apigenina/farmacologia , Curcumina/farmacologia , Tubulina (Proteína)/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Western Blotting , Linhagem Celular Tumoral , Dicroísmo Circular , Curcumina/química , Curcumina/metabolismo , Sinergismo Farmacológico , Cabras , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...