Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(3): e0330423, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38315027

RESUMO

Olorofim, the first member of the novel class of antifungal drugs, the orotomides, shows promising anti-Aspergillus activity and is currently in phase III clinical development. Using high-throughput microscopy, we monitored olorofim's antifungal potential at sub-minimum inhibitory concentration (MIC) levels with a focus on early-stage growth. Unlike voriconazole, olorofim showed significant growth inhibitory activities against three main pathogenic Aspergillus species, Aspergillus fumigatus, Aspergillus flavus, and Aspergillus niger, at concentrations >100,000-fold below its MIC. IMPORTANCE: Among antifungal compounds in clinical development for systemic disease, the orotomide olorofim is one of only two that target a completely new mechanism of action. Olorofim is highly potent against pathogenic Aspergillus species including cryptic species that frequently show increased resistance to current agents. In this study, our primary focus was on evaluating in detail the inhibitory activity of voriconazole and olorofim against different pathogenic Aspergillus species employing high-throughput microscopy. Compared to standardized, less-sensitive visual assessment-based methods, microscopy-assisted growth monitoring allowed us to detect sub-MIC drug concentration ranges with significant inhibitory activity at early-stage growth. This revealed that olorofim exerts growth inhibition at concentrations that are several magnitudes below those of voriconazole.


Assuntos
Acetamidas , Antifúngicos , Aspergillus niger , Piperazinas , Pirimidinas , Pirróis , Antifúngicos/farmacologia , Voriconazol/farmacologia , Testes de Sensibilidade Microbiana
2.
Nat Microbiol ; 9(1): 29-34, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38151646

RESUMO

Widespread use of azole antifungals in agriculture has been linked to resistance in the pathogenic fungus Aspergillus fumigatus. We show that exposure of A. fumigatus to the agrochemical fungicide, ipflufenoquin, in vitro can select for strains that are resistant to olorofim, a first-in-class clinical antifungal with the same mechanism of action. Resistance is caused by non-synonymous mutations within the target of ipflufenoquin/olorofim activity, dihydroorotate dehydrogenase (DHODH), and these variants have no overt growth defects.


Assuntos
Aspergillus fumigatus , Fungicidas Industriais , Aspergillus fumigatus/genética , Fungicidas Industriais/farmacologia , Agroquímicos , Pirróis/farmacologia , Antifúngicos/farmacologia
3.
PLoS One ; 18(8): e0289441, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37531380

RESUMO

Olorofim is a new antifungal in clinical development which has a novel mechanism of action against dihydroorotate dehydrogenase (DHODH). DHODH form a ubiquitous family of enzymes in the de novo pyrimidine biosynthetic pathway and are split into class 1A, class 1B and class 2. Olorofim specifically targets the fungal class 2 DHODH present in a range of pathogenic moulds. The nature and number of DHODH present in many fungal species have not been addressed for large clades of this kingdom. Mucorales species do not respond to olorofim; previous work suggests they have only class 1A DHODH and so lack the class 2 target that olorofim inhibits. The dematiaceous moulds have mixed susceptibility to olorofim, yet previous analyses imply that they have class 2 DHODH. As this is at odds with their intermediate susceptibility to olorofim, we hypothesised that these pathogens may maintain a second class of DHODH, facilitating pyrimidine biosynthesis in the presence of olorofim. The aim of this study was to investigate the DHODH repertoire of clinically relevant species of Mucorales and dematiaceous moulds to further characterise these pathogens and understand variations in olorofim susceptibility. Using bioinformatic analysis, S. cerevisiae complementation and biochemical assays of recombinant protein, we provide the first evidence that two representative members of the Mucorales have only class 1A DHODH, substantiating a lack of olorofim susceptibility. In contrast, bioinformatic analyses initially suggested that seven dematiaceous species appeared to harbour both class 1A-like and class 2-like DHODH genes. However, further experimental investigation of the putative class 1A-like genes through yeast complementation and biochemical assays characterised them as dihydrouracil oxidases rather than DHODHs. These data demonstrate variation in dematiaceous mould olorofim susceptibility is not due to a secondary DHODH and builds on the growing picture of fungal dihydrouracil oxidases as an example of horizontal gene transfer.


Assuntos
Mucorales , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Di-Hidro-Orotato Desidrogenase , Saccharomyces cerevisiae/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/metabolismo , Pirimidinas/farmacologia
4.
J Fungi (Basel) ; 9(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37367585

RESUMO

The epidemiology of invasive fungal infections (IFIs) is currently changing, driven by aggressive immunosuppressive therapy, leading to an expanded spectrum of patients at risk of IFIs. Aspergillosis is a leading cause of IFIs, which usually affects immunocompromised patients. There are a limited number of antifungal medications available for treating IFIs, and their effectiveness is often hindered by rising resistance rates and practical limitations. Consequently, new antifungals, especially those with novel mechanisms of action, are increasingly required. This study assessed the activity of four novel antifungal agents with different mechanisms of activity, namely, manogepix, rezafungin, ibrexafungerp, and olorofim, against 100 isolates of Aspergillus section Terrei, containing amphotericin-B (AmB)-wildtype/non-wildtype and azole-susceptible/-resistant strains, according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) method. In general, all tested agents showed potent and consistent activity against the tested isolates, exhibiting geometric mean (GM) and minimum effective concentration (MEC)/minimum inhibitory concentration (MIC) ranges, respectively, as follows: manogepix (0.048 mg/L, 0.032-0.5 mg/L), rezafungin (0.020 mg/L, 0.016-0.5 mg/L), ibrexafungerp (0.071 mg/L, 0.032-2 mg/L), and olorofim (0.008 mg/L, 0.008-0.032 mg/L). In terms of MIC90/MEC90, olorofim had the lowest values (0.008 mg/L), followed by rezafungin (0.032 mg/L), manogepix (0.125 mg/L), and ibrexafungerp (0.25 mg/L). All the antifungals tested demonstrated promising in vitro activity against Aspergillus section Terrei, including A. terreus as well as azole-resistant and AmB-non-wildtype cryptic species.

5.
Microbiol Spectr ; 11(1): e0278922, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36629417

RESUMO

Scedosporium spp. and Lomentospora prolificans are an emerging group of fungi refractory to current antifungal treatments. These species largely affect immunocompromised individuals but can also be lung colonizers in cystic fibrosis patients. Although Scedosporium apiospermum is thought to be the predominant species, the group has been expanded to a species complex. The distribution of species within the S. apiospermum species complex and other closely related species in the United States is largely unknown. Here, we used ß-tubulin and ITS sequences to identify 37 Scedosporium isolates to the species level. These Scedosporium isolates as well as 13 L. prolificans isolates were tested against a panel of nine antifungal drugs, including the first in novel class orotimide, olorofim. IMPORTANCE Scedosporium and Lomentospora infections are notoriously hard to treat as these organisms can be resistant to numerous antifungals. The manuscript contributes to our knowledge of the activity of the new antifungal agent olorofim and comparator agents against Lomentospora and against Scedosporium isolates that have been molecularly identified to the species level. The efficacy of olorofim against all species of Scedosporium and Lomentospora was confirmed.


Assuntos
Ascomicetos , Scedosporium , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Piperazinas , Pirimidinas , Testes de Sensibilidade Microbiana
6.
Emerg Microbes Infect ; 11(1): 703-714, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35109772

RESUMO

Olorofim (F901318) is a new antifungal currently under clinical development that shows both in vitro and in vivo activity against a number of filamentous fungi including Aspergillus fumigatus. In this study, we screened A. fumigatus isolates for intrinsic olorofim-resistant A. fumigatus and evaluated the ability of A. fumigatus to acquire an olorofim-resistant phenotype. No intrinsic resistance was found in 975 clinical A. fumigatus isolates. However, we found that isolates with increased olorofim MICs (> 8 mg/L) could be selected using a high number of conidia and olorofim exposure under laboratory conditions. Assessment of the frequency of acquired olorofim resistance development of A. fumigatus was shown to be higher than for voriconazole but lower than for itraconazole. Sequencing the PyrE gene of isogenic isolates with olorofim MICs of >8 mg/L identified various amino acid substitutions with a hotspot at locus G119. Olorofim was shown to have reduced affinity to mutated target protein dihydroorotate dehydrogenase (DHODH) and the effect of these mutations was proven by introducing the mutations directly in A. fumigatus. We then investigated whether G119 mutations were associated with a fitness cost in A. fumigatus. These experiments showed a small but significant reduction in growth rate for strains with a G119V substitution, while strains with a G119C substitution did not exhibit a reduction in growth rate. These in vitro findings were confirmed in an in vivo pathogenicity model.


Assuntos
Aspergillus fumigatus , Pirimidinas , Acetamidas , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Proteínas Fúngicas/genética , Testes de Sensibilidade Microbiana , Piperazinas , Pirimidinas/farmacologia , Pirróis
7.
J Fungi (Basel) ; 7(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34065811

RESUMO

Olorofim is a novel antifungal drug that belongs to the orotomide drug class which inhibits fungal dihydroorotate dehydrogenase (DHODH), thus halting pyrimidine biosynthesis and ultimately DNA synthesis, cell growth and division. It is being developed at a time when many invasive fungal infections exhibit antifungal resistance or have limited treatment options. The goal of this study was to evaluate the in vitro effectiveness of olorofim against a large collection of recently isolated, clinically relevant American mold isolates. In vitro antifungal activity was determined for 246 azole-susceptible Aspergillus fumigatus isolates, five A. fumigatus with TR34/L98H-mediated resistance, 19 Rhizopus species isolates, 21 Fusarium species isolates, and one isolate each of six other species of molds. Olorofim minimum inhibitory concentrations (MICs) were compared to antifungal susceptibility testing profiles for amphotericin B, anidulafungin, caspofungin, isavuconazole, itraconazole, micafungin, posaconazole, and voriconazole. Olorofim MICs were significantly lower than those of the echinocandin and azole drug classes and amphotericin B. A. fumigatus wild type and resistant isolates shared the same MIC50 = 0.008 µg/mL. In non-Aspergillus susceptible isolates (MIC ≤ 2 µg/mL), the geometric mean (GM) MIC to olorofim was 0.54 µg/mL with a range of 0.015-2 µg/mL. Olorofim had no antifungal activity (MIC ≥ 2 µg/mL) against 10% of the collection (31 in 297), including some isolates from Rhizopus spp. and Fusarium spp. Olorofim showed promising activity against A. fumigatus and other molds regardless of acquired azole resistance.

8.
J Fungi (Basel) ; 6(2)2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-32290206

RESUMO

The first characterized antifungal in the orotomide class is olorofim. It targets the de novo pyrimidine biosynthesis pathway by inhibiting dihydroorotate dehydrogenase (DHODH). The pyrimidines uracil, thymine and cytosine are the building blocks of DNA and RNA; thus, inhibition of their synthesis is likely to have multiple effects, including affecting cell cycle regulation and protein synthesis. Additionally, uridine-5'-triphosphate (UTP) is required for the formation of uridine-diphosphate glucose (UDP-glucose), which is an important precursor for several cell wall components. In this study, the dynamic effects of olorofim treatment on the morphology and organization of Aspergillus fumigatus hyphae were analyzed microscopically using confocal live-cell imaging. Treatment with olorofim led to increased chitin content in the cell wall, increased septation, enlargement of vacuoles and inhibition of mitosis. Furthermore, vesicle-like structures, which could not be stained or visualized with a range of membrane- or vacuole-selective dyes, were found in treated hyphae. A colocalization study of DHODH and MitoTracker Red FM confirmed for the first time that A. fumigatus DHODH is localized in the mitochondria. Overall, olorofim treatment was found to significantly influence the dynamic structure and organization of A. fumigatus hyphae.

9.
J Antimicrob Chemother ; 75(4): 936-941, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31904836

RESUMO

OBJECTIVES: Eumycetoma is currently treated with a combination of itraconazole therapy and surgery, with limited success. Recently, olorofim, the lead candidate of the orotomides, a novel class of antifungal agents, entered a Phase II trial for the treatment of invasive fungal infections. Here we determined the activity of olorofim against Madurella mycetomatis, the main causative agent of eumycetoma. METHODS: Activity of olorofim against M. mycetomatis was determined by in silico comparison of the target gene, dihydroorotate dehydrogenase (DHODH), and in vitro susceptibility testing. We also investigated the in vitro interaction between olorofim and itraconazole against M. mycetomatis. RESULTS: M. mycetomatis and Aspergillus fumigatus share six out of seven predicted binding residues in their DHODH DNA sequence, predicting susceptibility to olorofim. Olorofim demonstrated excellent potency against M. mycetomatis in vivo with MICs ranging from 0.004 to 0.125 mg/L and an MIC90 of 0.063 mg/L. Olorofim MICs were mostly one dilution step lower than the itraconazole MICs. In vitro interaction studies demonstrated that olorofim and itraconazole work indifferently when combined. CONCLUSIONS: We demonstrated olorofim has potent in vitro activity against M. mycetomatis and should be further evaluated in vivo as a treatment option for this disease.


Assuntos
Madurella , Micetoma , Acetamidas , Antifúngicos/farmacologia , Humanos , Micetoma/tratamento farmacológico , Piperazinas , Pirimidinas , Pirróis
10.
J Antimicrob Chemother ; 73(11): 3068-3073, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30351438

RESUMO

Objectives: In vitro and in vivo activity of the dihydroorotate dehydrogenase inhibitor olorofim (formerly F901318) (F2G Limited, UK) against clinically relevant species of the Aspergillus section Terrei was evaluated. Methods: A total of 92 clinical Aspergillus section Terrei isolates [42 Aspergillus terreus sensu stricto and 50 cryptic species: Aspergillus alabamensis (n = 8), Aspergillus citrinoterreus (n = 27), Aspergillus floccosus (n = 1), Aspergillus hortai (n = 13) and Aspergillus neoafricanus (n = 1)] were evaluated. MICs were determined using the CLSI M38-A2 method. MICs of olorofim were compared with those of posaconazole, voriconazole, itraconazole and amphotericin B. The in vivo efficacy of olorofim was determined in an immunosuppressed murine model of disseminated aspergillosis. Results: Olorofim was highly active against all tested Aspergillus section Terrei isolates, exhibiting an MIC range of 0.002-0.063 mg/L. Slightly higher MICs were observed for A. terreus cryptic species. Olorofim MICs were lower than those observed for the azoles. Selected strains with elevated MICs of azoles were highly susceptible to olorofim. Olorofim administered by oral and intravenous routes produced survival rates of 90%-100% in A. terreus-infected mice. Conclusions: Olorofim showed potent and consistent in vitro activity against all A. terreus strains tested, including those with elevated MICs of other antifungal substances. Overall, growth inhibition by olorofim was superior to that of azoles. In vivo data showed that olorofim was highly efficacious in prolonging survival of mice with disseminated aspergillosis due to A. terreus sensu stricto.


Assuntos
Acetamidas/farmacologia , Acetamidas/uso terapêutico , Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus/efeitos dos fármacos , Infecções Fúngicas Invasivas/tratamento farmacológico , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Piperazinas/farmacologia , Piperazinas/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Pirróis/farmacologia , Pirróis/uso terapêutico , Animais , Di-Hidro-Orotato Desidrogenase , Modelos Animais de Doenças , Hospedeiro Imunocomprometido , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana
11.
Artigo em Inglês | MEDLINE | ID: mdl-29891595

RESUMO

F901318 (olorofim) is a novel antifungal drug that is highly active against Aspergillus species. Belonging to a new class of antifungals called the orotomides, F901318 targets dihydroorotate dehydrogenase (DHODH) in the de novo pyrimidine biosynthesis pathway. In this study, the antifungal effects of F901318 against Aspergillus fumigatus were investigated. Live cell imaging revealed that, at a concentration of 0.1 µg/ml, F901318 completely inhibited germination, but conidia continued to expand by isotropic growth for >120 h. When this low F901318 concentration was applied to germlings or vegetative hyphae, their elongation was completely inhibited within 10 h. Staining with the fluorescent viability dye bis-(1,3-dibutylbarbituric acid) trimethine oxonol (DiBAC) showed that prolonged exposure to F901318 (>24 h) led to vegetative hyphal swelling and a decrease in hyphal viability through cell lysis. The time-dependent killing of F901318 was further confirmed by measuring the fungal biomass and growth rate in liquid culture. The ability of hyphal growth to recover in drug-free medium after 24 h of exposure to F901318 was strongly impaired compared to that of the untreated control. A longer treatment of 48 h further improved the antifungal effect of F901318. Together, the results of this study indicate that F901318 initially has a fungistatic effect on Aspergillus isolates by inhibiting germination and growth, but prolonged exposure is fungicidal through hyphal swelling followed by cell lysis.


Assuntos
Acetamidas/farmacologia , Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Hifas/efeitos dos fármacos , Piperazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Esporos Fúngicos/efeitos dos fármacos , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/ultraestrutura , Meios de Cultura/química , Hifas/crescimento & desenvolvimento , Hifas/ultraestrutura , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/ultraestrutura
12.
mBio ; 8(4)2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720735

RESUMO

Secondary metabolites are key mediators of virulence for many pathogens. Aspergillus fumigatus produces a vast array of these bioactive molecules, the biosynthesis of which is catalyzed by nonribosomal peptide synthetases (NRPSs) or polyketide synthases (PKSs). Both NRPSs and PKSs harbor carrier domains that are primed for acceptance of secondary metabolic building blocks by a phosphopantetheinyl transferase (P-pant). The A. fumigatus P-pant PptA has been shown to prime the putative NRPS Pes1 in vitro and has an independent role in lysine biosynthesis; however, its role in global secondary metabolism and its impact on virulence has not been described. Here, we demonstrate that PptA has a nonredundant role in the generation of the vast majority of detectable secondary metabolites in A. fumigatus, including the immunomodulator gliotoxin, the siderophores triacetylfusarinine C (TAFC) and ferricrocin (FC), and dihydroxy naphthalene (DHN)-melanin. We show that both the lysine and iron requirements of a pptA null strain exceed those freely available in mammalian tissues and that loss of PptA renders A. fumigatus avirulent in both insect and murine infection models. Since PptA lacks similarity to its mammalian orthologue, we assert that the combined role of this enzyme in both primary and secondary metabolism, encompassing multiple virulence determinants makes it a very promising antifungal drug target candidate. We further exemplify this point with a high-throughput fluorescence polarization assay that we developed to identify chemical inhibitors of PptA function that have antifungal activity.IMPORTANCE Fungal diseases are estimated to kill between 1.5 and 2 million people each year, which exceeds the global mortality estimates for either tuberculosis or malaria. Only four classes of antifungal agents are available to treat invasive fungal infections, and all suffer pharmacological shortcomings, including toxicity, drug-drug interactions, and poor bioavailability. There is an urgent need to develop a new class of drugs that operate via a novel mechanism of action. We have identified a potential drug target, PptA, in the fungal pathogen Aspergillus fumigatus PptA is required to synthesize the immunotoxic compound gliotoxin, DHN-melanin, which A. fumigatus employs to evade detection by host cells, the amino acid lysine, and the siderophores TAFC and FC, which A. fumigatus uses to scavenge iron. We show that strains lacking the PptA enzyme are unable to establish an infection, and we present a method which we use to identify novel antifungal drugs that inactivate PptA.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/patogenicidade , Proteínas de Bactérias/metabolismo , Fatores Biológicos/metabolismo , Lisina/biossíntese , Sideróforos/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Fatores de Virulência/metabolismo , Animais , Aspergilose/microbiologia , Aspergilose/patologia , Aspergillus fumigatus/genética , Modelos Animais de Doenças , Insetos , Camundongos , Metabolismo Secundário , Transferases (Outros Grupos de Fosfato Substituídos)/deficiência , Fatores de Virulência/deficiência
13.
Proc Natl Acad Sci U S A ; 113(45): 12809-12814, 2016 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-27791100

RESUMO

There is an important medical need for new antifungal agents with novel mechanisms of action to treat the increasing number of patients with life-threatening systemic fungal disease and to overcome the growing problem of resistance to current therapies. F901318, the leading representative of a novel class of drug, the orotomides, is an antifungal drug in clinical development that demonstrates excellent potency against a broad range of dimorphic and filamentous fungi. In vitro susceptibility testing of F901318 against more than 100 strains from the four main pathogenic Aspergillus spp. revealed minimal inhibitory concentrations of ≤0.06 µg/mL-greater potency than the leading antifungal classes. An investigation into the mechanism of action of F901318 found that it acts via inhibition of the pyrimidine biosynthesis enzyme dihydroorotate dehydrogenase (DHODH) in a fungal-specific manner. Homology modeling of Aspergillus fumigatus DHODH has identified a predicted binding mode of the inhibitor and important interacting amino acid residues. In a murine pulmonary model of aspergillosis, F901318 displays in vivo efficacy against a strain of A. fumigatus sensitive to the azole class of antifungals and a strain displaying an azole-resistant phenotype. F901318 is currently in late Phase 1 clinical trials, offering hope that the antifungal armamentarium can be expanded to include a class of agent with a mechanism of action distinct from currently marketed antifungals.

14.
PLoS One ; 10(11): e0143770, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26606674

RESUMO

Antifungal drugs acting via new mechanisms of action are urgently needed to combat the increasing numbers of severe fungal infections caused by pathogens such as Candida albicans. The phosphopantetheinyl transferase of Aspergillus fumigatus, encoded by the essential gene pptB, has previously been identified as a potential antifungal target. This study investigated the function of its orthologue in C. albicans, PPT2/C1_09480W by placing one allele under the control of the regulatable MET3 promoter, and deleting the remaining allele. The phenotypes of this conditional null mutant showed that, as in A. fumigatus, the gene PPT2 is essential for growth in C. albicans, thus fulfilling one aspect of an efficient antifungal target. The catalytic activity of Ppt2 as a phosphopantetheinyl transferase and the acyl carrier protein Acp1 as a substrate were demonstrated in a fluorescence transfer assay, using recombinant Ppt2 and Acp1 produced and purified from E.coli. A fluorescence polarisation assay amenable to high-throughput screening was also developed. Therefore we have identified Ppt2 as a broad-spectrum novel antifungal target and developed tools to identify inhibitors as potentially new antifungal compounds.


Assuntos
Antifúngicos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Candida albicans/efeitos dos fármacos , Candida albicans/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/antagonistas & inibidores , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Candida albicans/genética , Proteínas de Transporte , Biologia Computacional , Ativação Enzimática , Expressão Gênica , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas , Alinhamento de Sequência , Deleção de Sequência , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/química , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo
15.
PLoS One ; 7(9): e43559, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028460

RESUMO

Dihydroxyacid dehydratase (DHAD) is a key enzyme in the branched-chain amino acid biosynthetic pathway that exists in a variety of organisms, including fungi, plants and bacteria, but not humans. In this study we identified four putative DHAD genes from the filamentous fungus Aspergillus fumigatus by homology to Saccharomyces cerevisiae ILV3. Two of these genes, AFUA_2G14210 and AFUA_1G03550, initially designated AfIlv3A and AfIlv3B for this study, clustered in the same group as S. cerevisiae ILV3 following phylogenetic analysis. To investigate the functions of these genes, AfIlv3A and AfIlv3B were knocked out in A. fumigatus. Deletion of AfIlv3B gave no apparent phenotype whereas the Δilv3A strain required supplementation with isoleucine and valine for growth. Thus, AfIlv3A is required for branched-chain amino acid synthesis in A. fumigatus. A recombinant AfIlv3A protein derived from AFUA_2G14210 was shown to have DHAD activity in an in vitro assay, confirming that AfIlv3A is a DHAD. In addition we show that mutants lacking AfIlv3A and ilv3B exhibit reduced levels of virulence in murine infection models, emphasising the importance of branched-chain amino acid biosynthesis in fungal infections, and hence the potential of targeting this pathway with antifungal agents. Here we propose that AfIlv3A/AFUA_2G2410 be named ilvC.


Assuntos
Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Hidroliases/genética , Hidroliases/metabolismo , Sequência de Aminoácidos , Aminoácidos de Cadeia Ramificada/biossíntese , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/patogenicidade , Vias Biossintéticas , Ativação Enzimática , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Hidroliases/química , Masculino , Camundongos , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Mutação , Filogenia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Virulência/genética
16.
FEMS Microbiol Lett ; 332(1): 10-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22509997

RESUMO

Azoles are currently the mainstay of antifungal treatment both in agricultural and in clinical settings. Although the target site of azole action is well studied, the basis of azole resistance and the ultimate mode of action of the drug in fungi are poorly understood. To gain a deeper insight into these aspects of azole action, restriction-mediated plasmid integration (REMI) was used to create azole sensitive and resistant strains of the clinically important fungus Aspergillus fumigatus. Four azole sensitive insertions and four azole-resistant insertions were characterized. Three phenotypes could be re-created in wild-type AF210 by reintegration of rescued plasmid and a further four could be confirmed by complementation of the mutant phenotype with a copy of the wild-type gene predicted to be disrupted by the original insertional event. Six insertions were in genes not previously associated with azole sensitivity or resistance. Two insertions occur in transporter genes that may affect drug efflux, whereas others may affect transcriptional regulation of sterol biosynthesis genes and NADH metabolism in the mitochondrion. Two insertions are in genes of unknown function.


Assuntos
Antifúngicos/farmacologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Genes Fúngicos , Itraconazol/farmacologia , Southern Blotting , Mapeamento Cromossômico , Farmacorresistência Fúngica , Mutagênese Insercional , Fenótipo , Plasmídeos
17.
Fungal Genet Biol ; 48(4): 456-64, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21195204

RESUMO

The mitochondrial phosphopantetheinyl transferase gene pptB of the opportunistic pathogen Aspergillus fumigatus has been identified and characterised. Unlike pptA, which is required for lysine biosynthesis, secondary metabolism, and iron assimilation, pptB is essential for viability. PptB is located in the mitochondria. In vitro expression of pptA and pptB has shown that PptB is specific for the mitochondrial acyl carrier protein AcpA.


Assuntos
Aspergillus fumigatus/enzimologia , Proteínas de Bactérias/metabolismo , Mitocôndrias/enzimologia , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Proteína de Transporte de Acila/metabolismo , Aspergillus fumigatus/genética , Aspergillus fumigatus/fisiologia , Proteínas de Bactérias/genética , Viabilidade Microbiana , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/genética
18.
Eukaryot Cell ; 9(3): 438-48, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20097738

RESUMO

Genes that are essential for viability represent potential targets for the development of anti-infective agents. However, relatively few have been determined in the filamentous fungal pathogen Aspergillus fumigatus. A novel solution employing parasexual genetics coupled with transposon mutagenesis using the Fusarium oxysporum transposon impala had previously enabled the identification of 20 essential genes from A. fumigatus; however, further use of this system required a better understanding of the mode of action of the transposon itself. Examination of a range of conditions indicated that impala is activated by prolonged exposure to low temperatures. This newly identified property was then harnessed to identify 96 loci that are critical for viability in A. fumigatus, including genes required for RNA metabolism, organelle organization, protein transport, ribosome biogenesis, and transcription, as well as a number of noncoding RNAs. A number of these genes represent potential targets for much-needed novel antifungal drugs.


Assuntos
Aspergillus fumigatus/citologia , Aspergillus fumigatus/genética , Temperatura Baixa , Elementos de DNA Transponíveis/genética , Genes Fúngicos/genética , Viabilidade Microbiana/genética , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus nidulans/genética , Diploide , Fusarium/genética , Expressão Gênica/genética , Haploidia , Cinética , Mutagênese Insercional/genética , Regiões Promotoras Genéticas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética , Transposases/genética
19.
Fungal Genet Biol ; 45(2): 117-26, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18053753

RESUMO

In recent years the filamentous fungus Aspergillus fumigatus has become a significant cause of infection in man and as such has become the focus of much study. It is thought to be the leading mould pathogen in leukaemia and transplant patients and is responsible for mortality in a large number of individuals with immunological disorders. In an attempt to develop molecular mutagenesis tools for assessment of this organism, the genome of A. fumigatus was analysed to identify possible functional transposable elements. An apparently intact Fot1/Pogo type transposon with 65% identity to the active Tan1 element of Aspergillus niger was identified and designated Aft1. Aft1 is a 1.9kb element present in multiple (>20) highly conserved copies. It encodes a 332 amino acid transposase which contains all the functional motifs required for transposition. In addition, the transposase was expressed in cultures grown at 37 degrees C in all three strains assessed and excision analysis suggests Aft1 may be active and of use in transposon tagging experiments. Southern hybridisation patterns indicate that Aft1 is widely distributed amongst clinical isolates of A. fumigatus with considerable variation in genomic localisation. A comprehensive analysis of the genomic localisation of Aft1 in the sequenced strain AF293 show that one insertion is 30 bases upstream of a predicted gene encoding a G-protein coupled receptor. Expression analysis indicates that this gene has been inactivated by the insertion.


Assuntos
Aspergillus fumigatus/genética , Elementos de DNA Transponíveis/genética , Genoma Fúngico , Sequência de Aminoácidos , Aspergilose/microbiologia , Humanos , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Receptores CCR10/genética , Alinhamento de Sequência
20.
Mycol Res ; 110(Pt 10): 1140-51, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17015001

RESUMO

Fungi secrete extracellular enzymes to enable them to harvest nutrients from the environment. In the case of pathogenic fungi these enzymes can also be pathogenesis factors. Here we report the identification in fungi of a complex family of extracellular phospholipase C (PLC) enzymes, homologous to the Pseudomonas aeruginosa PLCH_PSEAE. Database searches and phylogenetic analysis showed that the PLCs clustered into two groups with different evolutionary histories. One group, subdivided into PLC-A, -B, -C and -D, was found only in aspergilli and Neosartorya fischeri. Each species only ever showed three of the four PLCs except N. fischeri which had all four PLCs plus duplicate PLC-A, -B and -C genes. Modelling studies indicated that these PLCs had mechanistic similarities to phosphoesterases and aryl sulphatases, but that they probably did not differ in substrate specificity. The second group, PLC-E, was seen in a wider range of fungi including some species of aspergilli and was always found in a head-to-head arrangement with a copper oxidase, similar to the laccases. The PLC genes appear to have arisen from separate gene transfer events from bacteria or lower eukaryotes. Thus, aspergilli have acquired PLCs twice in the course of evolution.


Assuntos
Aspergillus/enzimologia , Fosfolipases Tipo C/genética , Sequência de Aminoácidos , Aspergillus flavus/enzimologia , Aspergillus flavus/genética , Aspergillus fumigatus/enzimologia , Aspergillus fumigatus/genética , Domínio Catalítico , Proteínas Fúngicas/genética , Regulação Enzimológica da Expressão Gênica , Isoenzimas/química , Isoenzimas/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fosfolipases Tipo C/química , Fosfolipases Tipo C/classificação , Fosfolipases Tipo C/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...