Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 675: 323-350, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36220275

RESUMO

RNA 5' ends are remarkably heterogeneous. In addition to the eukaryotic 5' methyl-7-Guanosine (m7G) cap, a number of primarily metabolite-based cap structures have been identified both in prokaryotic and eukaryotic systems. These metabolite caps include Nicotinamide Adenine Dinucleotide (NAD+/NADH), dephosphoCoenzyme A (dpCoA), Flavin Adenine Dinucleotide (FAD), dinucleotide polyphosphates and Uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) (Chen et al., 2009; Kowtoniuk et al., 2009; Wang et al., 2019). The most highly studied of these new cap structures, 5' NAD, has significant effects on RNA stability (Bird et al., 2016; Jiao et al., 2017). Both prokaryotes and eukaryotes have decapping enzymes specific to these metabolite caps and decapping is an integral step in the control of RNA stability (Cahová et al., 2015; Jiao et al., 2017; Sharma et al., 2020; Zhang et al., 2020). To better study how these 5' metabolite RNAs are decapped, we present a method to (1) generate radiolabeled dinucleotide and "full length" 5' capped RNA substrates for use in decapping assays, (2) a simple decapping assay to test the activity of various enzymes on different 5' capped transcripts and (3) a gel electrophoresis-based method for the visualization and differentiation of 5' capped transcripts.


Assuntos
NAD , Capuzes de RNA , Eletroforese , Endorribonucleases/metabolismo , Flavina-Adenina Dinucleotídeo/metabolismo , Guanosina , NAD/metabolismo , Polifosfatos , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Estabilidade de RNA , Uridina Difosfato N-Acetilglicosamina
2.
Proc Natl Acad Sci U S A ; 119(33): e2205278119, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35951650

RESUMO

Lambdoid bacteriophage Q proteins are transcription antipausing and antitermination factors that enable RNA polymerase (RNAP) to read through pause and termination sites. Q proteins load onto RNAP engaged in promoter-proximal pausing at a Q binding element (QBE) and adjacent sigma-dependent pause element to yield a Q-loading complex, and they translocate with RNAP as a pausing-deficient, termination-deficient Q-loaded complex. In previous work, we showed that the Q protein of bacteriophage 21 (Q21) functions by forming a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of pause and termination RNA hairpins. Here, we report atomic structures of four states on the pathway of antitermination by the Q protein of bacteriophage λ (Qλ), a Q protein that shows no sequence similarity to Q21 and that, unlike Q21, requires the transcription elongation factor NusA for efficient antipausing and antitermination. We report structures of Qλ, the Qλ-QBE complex, the NusA-free pre-engaged Qλ-loading complex, and the NusA-containing engaged Qλ-loading complex. The results show that Qλ, like Q21, forms a nozzle that narrows and extends the RNAP RNA-exit channel, preventing formation of RNA hairpins. However, the results show that Qλ has no three-dimensional structural similarity to Q21, employs a different mechanism of QBE recognition than Q21, and employs a more complex process for loading onto RNAP than Q21, involving recruitment of Qλ to form a pre-engaged loading complex, followed by NusA-facilitated refolding of Qλ to form an engaged loading complex. The results establish that Qλ and Q21 are not structural homologs and are solely functional analogs.


Assuntos
Bacteriófago lambda , Proteínas de Escherichia coli , Redobramento de Proteína , Terminação da Transcrição Genética , Fatores de Elongação da Transcrição , Proteínas Virais , Bacteriófago lambda/genética , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/química , Proteínas de Escherichia coli/química , Conformação Proteica , Fatores de Elongação da Transcrição/química , Proteínas Virais/química
3.
Elife ; 72018 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-30526856

RESUMO

Bacterial and eukaryotic nuclear RNA polymerases (RNAPs) cap RNA with the oxidized and reduced forms of the metabolic effector nicotinamide adenine dinucleotide, NAD+ and NADH, using NAD+ and NADH as non-canonical initiating nucleotides for transcription initiation. Here, we show that mitochondrial RNAPs (mtRNAPs) cap RNA with NAD+ and NADH, and do so more efficiently than nuclear RNAPs. Direct quantitation of NAD+- and NADH-capped RNA demonstrates remarkably high levels of capping in vivo: up to ~60% NAD+ and NADH capping of yeast mitochondrial transcripts, and up to ~15% NAD+ capping of human mitochondrial transcripts. The capping efficiency is determined by promoter sequence at, and upstream of, the transcription start site and, in yeast and human cells, by intracellular NAD+ and NADH levels. Our findings indicate mtRNAPs serve as both sensors and actuators in coupling cellular metabolism to mitochondrial transcriptional outputs, sensing NAD+ and NADH levels and adjusting transcriptional outputs accordingly.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Capuzes de RNA/genética , RNA Mitocondrial/genética , Transcrição Gênica , Citoplasma/genética , Citoplasma/metabolismo , Humanos , Mitocôndrias/genética , NAD/genética , Oxirredução , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Sítio de Iniciação de Transcrição
4.
RNA ; 24(10): 1418-1425, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30045887

RESUMO

RNA 5' cap structures comprising the metabolic effector nicotinamide adenine dinucleotide (NAD) have been identified in diverse organisms. Here we report a simple, two-step procedure to detect and quantitate NAD-capped RNA, termed "NAD-capQ." By use of NAD-capQ we quantitate NAD-capped RNA levels in Escherichia coli, Saccharomyces cerevisiae, and human cells, and we measure increases in NAD-capped RNA levels in cells from all three organisms harboring disruptions in their respective "deNADding" enzymes. We further show that NAD-capped RNA levels in human cells respond to changes in cellular NAD concentrations, indicating that NAD capping provides a mechanism for human cells to directly sense and respond to alterations in NAD metabolism. Our findings establish NAD-capQ as a versatile, rapid, and accessible methodology to detect and quantitate 5'-NAD caps on endogenous RNA in any organism.


Assuntos
Colorimetria , NAD/química , Capuzes de RNA/química , Capuzes de RNA/genética , RNA/química , RNA/genética , Alelos , Linhagem Celular , Colorimetria/métodos , Humanos , Espaço Intracelular , Espectrometria de Massas , Mutação , NAD/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética
5.
Mol Cell ; 70(3): 553-564.e9, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681497

RESUMO

Nucleoside-containing metabolites such as NAD+ can be incorporated as 5' caps on RNA by serving as non-canonical initiating nucleotides (NCINs) for transcription initiation by RNA polymerase (RNAP). Here, we report CapZyme-seq, a high-throughput-sequencing method that employs NCIN-decapping enzymes NudC and Rai1 to detect and quantify NCIN-capped RNA. By combining CapZyme-seq with multiplexed transcriptomics, we determine efficiencies of NAD+ capping by Escherichia coli RNAP for ∼16,000 promoter sequences. The results define preferred transcription start site (TSS) positions for NAD+ capping and define a consensus promoter sequence for NAD+ capping: HRRASWW (TSS underlined). By applying CapZyme-seq to E. coli total cellular RNA, we establish that sequence determinants for NCIN capping in vivo match the NAD+-capping consensus defined in vitro, and we identify and quantify NCIN-capped small RNAs (sRNAs). Our findings define the promoter-sequence determinants for NCIN capping with NAD+ and provide a general method for analysis of NCIN capping in vitro and in vivo.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , NAD/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica/genética , Nucleotídeos/genética , Sítio de Iniciação de Transcrição/fisiologia , Transcrição Gênica/genética , Transcriptoma/genética
6.
Bio Protoc ; 7(12)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28840175

RESUMO

It recently has been established that adenine-containing cofactors, including nicotinamide adenine dinucleotide (NAD+), reduced nicotinamide adenine dinucleotide (NADH), and 3'-desphospho-coenzyme A (dpCoA), can serve as 'non-canonical initiating nucleotides' (NCINs) for transcription initiation by bacterial and eukaryotic cellular RNA polymerases (RNAPs) and that the efficiency of the reaction is determined by promoter sequence (Bird et al., 2016). Here we describe a protocol to quantify the relative efficiencies of transcription initiation using an NCIN vs. transcription initiation using a nucleoside triphosphate (NTP) for a given promoter sequence.

7.
Cell ; 168(6): 1015-1027.e10, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283058

RESUMO

Eukaryotic mRNAs generally possess a 5' end N7 methyl guanosine (m7G) cap that promotes their translation and stability. However, mammalian mRNAs can also carry a 5' end nicotinamide adenine dinucleotide (NAD+) cap that, in contrast to the m7G cap, does not support translation but instead promotes mRNA decay. The mammalian and fungal noncanonical DXO/Rai1 decapping enzymes efficiently remove NAD+ caps, and cocrystal structures of DXO/Rai1 with 3'-NADP+ illuminate the molecular mechanism for how the "deNADding" reaction produces NAD+ and 5' phosphate RNA. Removal of DXO from cells increases NAD+-capped mRNA levels and enables detection of NAD+-capped intronic small nucleolar RNAs (snoRNAs), suggesting NAD+ caps can be added to 5'-processed termini. Our findings establish NAD+ as an alternative mammalian RNA cap and DXO as a deNADding enzyme modulating cellular levels of NAD+-capped RNAs. Collectively, these data reveal that mammalian RNAs can harbor a 5' end modification distinct from the classical m7G cap that promotes rather than inhibits RNA decay.


Assuntos
Processamento Pós-Transcricional do RNA , Estabilidade de RNA , Animais , Endorribonucleases/metabolismo , Células HEK293 , Humanos , Camundongos , NAD/metabolismo , Proteínas Nucleares/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo
8.
Nature ; 535(7612): 444-7, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27383794

RESUMO

The chemical nature of the 5' end of RNA is a key determinant of RNA stability, processing, localization and translation efficiency, and has been proposed to provide a layer of 'epitranscriptomic' gene regulation. Recently it has been shown that some bacterial RNA species carry a 5'-end structure reminiscent of the 5' 7-methylguanylate 'cap' in eukaryotic RNA. In particular, RNA species containing a 5'-end nicotinamide adenine dinucleotide (NAD+) or 3'-desphospho-coenzyme A (dpCoA) have been identified in both Gram-negative and Gram-positive bacteria. It has been proposed that NAD+, reduced NAD+ (NADH) and dpCoA caps are added to RNA after transcription initiation, in a manner analogous to the addition of 7-methylguanylate caps. Here we show instead that NAD+, NADH and dpCoA are incorporated into RNA during transcription initiation, by serving as non-canonical initiating nucleotides (NCINs) for de novo transcription initiation by cellular RNA polymerase (RNAP). We further show that both bacterial RNAP and eukaryotic RNAP II incorporate NCIN caps, that promoter DNA sequences at and upstream of the transcription start site determine the efficiency of NCIN capping, that NCIN capping occurs in vivo, and that NCIN capping has functional consequences. We report crystal structures of transcription initiation complexes containing NCIN-capped RNA products. Our results define the mechanism and structural basis of NCIN capping, and suggest that NCIN-mediated 'ab initio capping' may occur in all organisms.


Assuntos
Coenzima A/metabolismo , NAD/metabolismo , Capuzes de RNA/metabolismo , Iniciação da Transcrição Genética , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , RNA Polimerases Dirigidas por DNA/metabolismo , Dados de Sequência Molecular , Nucleotídeos/química , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas/genética , Capuzes de RNA/química , RNA Polimerase II/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítio de Iniciação de Transcrição
9.
Nucleic Acids Res ; 44(14): 6732-40, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27098041

RESUMO

The Escherichia coli σ70 initiation factor is required for a post-initiation, promoter-proximal pause essential for regulation of lambdoid phage late gene expression; potentially, σ70 acts at other sites during transcription elongation as well. The pause is induced by σ70 binding to a repeat of the promoter -10 sequence. After σ70 binding, further RNA synthesis occurs as DNA is drawn (or 'scrunched') into the enzyme complex, presumably exactly as occurs during initial synthesis from the promoter; this synthesis then pauses at a defined site several nucleotides downstream from the active center position when σ70 first engages the -10 sequence repeat. We show that the actual pause site in the stabilized, scrunched complex is the 'elemental pause sequence' recognized from its frequent occurrence in the E. coli genome. σ70 binding and the elemental pause sequence together, but neither alone, produce a substantial transcription pause.


Assuntos
Escherichia coli/genética , Fatores de Iniciação de Peptídeos/metabolismo , Fator sigma/metabolismo , Transcrição Gênica , Bacteriófago lambda/metabolismo , Composição de Bases/genética , Sequência de Bases , DNA Viral/metabolismo , Modelos Genéticos , Ácidos Nucleicos Heteroduplexes , Regiões Promotoras Genéticas , RNA Bacteriano/metabolismo , Moldes Genéticos
10.
Science ; 351(6277): 1090-3, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941320

RESUMO

In bacterial transcription initiation, RNA polymerase (RNAP) selects a transcription start site (TSS) at variable distances downstream of core promoter elements. Using next-generation sequencing and unnatural amino acid-mediated protein-DNA cross-linking, we have determined, for a library of 4(10) promoter sequences, the TSS, the RNAP leading-edge position, and the RNAP trailing-edge position. We find that a promoter element upstream of the TSS, the "discriminator," participates in TSS selection, and that, as the TSS changes, the RNAP leading-edge position changes, but the RNAP trailing-edge position does not change. Changes in the RNAP leading-edge position, but not the RNAP trailing-edge position, are a defining hallmark of the "DNA scrunching" that occurs concurrent with RNA synthesis in initial transcription. We propose that TSS selection involves DNA scrunching prior to RNA synthesis.


Assuntos
Bactérias/genética , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , Cristalografia por Raios X , DNA/química , DNA/genética , Biblioteca Gênica , Conformação de Ácido Nucleico
11.
Microbiology (Reading) ; 161(8): 1683-1693, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25998262

RESUMO

Expression of the lysis cassette (essD, ybcT, rzpD/rzoD) from the defective lambdoid prophage at the 12th minute of Escherichia coli's genome (DLP12) is required in some strains for proper curli expression and biofilm formation. Regulating production of the lytic enzymes encoded by these genes is critical for maintaining cell wall integrity. In lambdoid phages, late-gene regulation is mediated by the vegetative sigma factor RpoD and the lambda antiterminator Qλ. We previously demonstrated that DLP12 contains a Q-like protein (QDLP12) that positively regulates transcription of the lysis cassette, but the sigma factor responsible for this transcription initiation remained to be elucidated. In silico analysis of essDp revealed the presence of a putative - 35 and - 10 sigma site recognized by the extracytoplasmic stress response sigma factor, RpoE. In this work, we report that RpoE overexpression promoted transcription from essDp in vivo, and in vitro using purified RNAP. We demonstrate that the - 35 region is important for RpoE binding in vitro and that this region is also important for QDLP12-mediated transcription of essDp in vivo. A bacterial two-hybrid assay indicated that QDLP12 and RpoE physically interact in vivo, consistent with what is seen for Qλ and RpoD. We propose that RpoE regulates transcription of the DLP12 lysis genes through interaction with QDLP12 and that proper expression is dependent on an intact - 35 sigma region in essDp. This work provides evidence that the unique Q-dependent regulatory mechanism of lambdoid phages has been co-opted by E. coli harbouring defective DLP12 and has been integrated into the tightly controlled RpoE regulon.


Assuntos
Escherichia coli/virologia , Regulação Viral da Expressão Gênica , Prófagos/metabolismo , Fator sigma/metabolismo , Proteínas Virais/metabolismo , Sequência de Bases , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Prófagos/genética , Ligação Proteica , Fator sigma/genética , Transcrição Gênica , Proteínas Virais/genética
12.
Science ; 344(6189): 1285-9, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24926020

RESUMO

Transcription elongation is interrupted by sequences that inhibit nucleotide addition and cause RNA polymerase (RNAP) to pause. Here, by use of native elongating transcript sequencing (NET-seq) and a variant of NET-seq that enables analysis of mutant RNAP derivatives in merodiploid cells (mNET-seq), we analyze transcriptional pausing genome-wide in vivo in Escherichia coli. We identify a consensus pause-inducing sequence element, G₋10Y₋1G(+1) (where -1 corresponds to the position of the RNA 3' end). We demonstrate that sequence-specific interactions between RNAP core enzyme and a core recognition element (CRE) that stabilize transcription initiation complexes also occur in transcription elongation complexes and facilitate pause read-through by stabilizing RNAP in a posttranslocated register. Our findings identify key sequence determinants of transcriptional pausing and establish that RNAP-CRE interactions modulate pausing.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Elongação da Transcrição Genética , Sítio de Iniciação de Transcrição , Iniciação da Transcrição Genética , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Genoma Bacteriano/genética , Monoéster Fosfórico Hidrolases/química , Monoéster Fosfórico Hidrolases/metabolismo
13.
J Biol Chem ; 281(45): 34349-56, 2006 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-16973605

RESUMO

DnaK/Hsp70 proteins are universally conserved ATP-dependent molecular chaperones that help proteins adopt and maintain their native conformations. DnaJ/Hsp40 and GrpE are co-chaperones that assist DnaK. CbpA is an Escherichia coli DnaJ homolog. It acts as a multicopy suppressor for dnaJ mutations and functions in vitro in combination with DnaK and GrpE in protein remodeling reactions. CbpA binds nonspecifically to DNA with preference for curved DNA and is a nucleoid-associated protein. The DNA binding and co-chaperone activities of CbpA are modulated by CbpM, a small protein that binds specifically to CbpA. To identify the regions of CbpA involved in the interaction of CbpA with CbpM and those involved in DNA binding, we constructed and characterized deletion and substitution mutants of CbpA. We discovered that CbpA interacted with CbpM through its N-terminal J-domain. We found that the region C-terminal to the J-domain was required for DNA binding. Moreover, we found that the CbpM interaction, DNA binding, and co-chaperone activities were separable; some mutants were proficient in some functions and defective in others.


Assuntos
Proteínas de Bactérias/metabolismo , Chaperonas Moleculares , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Reagentes de Ligações Cruzadas , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Luciferases/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Plasmídeos/genética , Estrutura Terciária de Proteína , Frações Subcelulares , Transativadores/genética , Transativadores/metabolismo
14.
J Biol Chem ; 279(7): 6027-34, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14634015

RESUMO

DNA replication of plasmid P1 requires a plasmid-encoded origin DNA-binding protein, RepA. RepA is an inactive dimer and is converted by molecular chaperones into an active monomer that binds RepA binding sites. Although the sequence of RepA is not homologous to that of F plasmid RepE, we found by using fold-recognition programs that RepA shares structural homology with RepE and built a model based on the RepE crystal structure. We constructed mutants in the two predicted DNA binding domains to test the model. As expected, the mutants were defective in P1 DNA binding. The model predicted that RepA binds the first half of the binding site through interactions with the C-terminal DNA binding domain and the second half through interactions with the N-terminal domain. The experiments supported the prediction. The model was further supported by the observation that mutants defective in dimerization map to the predicted subunit interface region, based on the crystal structure of pPS10 RepA, a RepE family member. These results suggest P1 RepA is structurally homologous to plasmid initiators, including those of F, R6K, pSC101, pCU1, pPS10, pFA3, pGSH500, Rts1, RepHI1B, RepFIB, and RSF1010.


Assuntos
DNA Helicases , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli , Proteínas/fisiologia , Proteínas Repressoras/química , Transativadores , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cromatografia em Gel , Cristalografia por Raios X , DNA/química , Proteínas de Ligação a DNA/metabolismo , Dimerização , Relação Dose-Resposta a Droga , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas/química , Proteínas Repressoras/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...