Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(5): e0268868, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35622823

RESUMO

Nociceptin/Orphanin FQ (N/OFQ) is the endogenous opioid agonist for the N/OFQ receptor or NOP. This receptor system is involved in pain processing but also has a role in immune regulation. Indeed, polymorphonuclear cells (PMNs) express mRNA for N/OFQ precursor and are a potential source for circulating N/OFQ. Current measurements are based on ELISA and RIA techniques. In this study we have designed a bioassay to measure N/OFQ release from single PMNs. Chinese Hamster Ovary (CHO) cells transfected with the human (h) NOP receptor and Gαiq5 chimera force receptor coupling in biosensor cells to increase intracellular Ca2+; this can be measured with FLUO-4 dye. If isolated PMNs from healthy human volunteers are layered next to CHOhNOPGαiq5 biosensor cells then stimulated with the chemoattractant N-formyl-methionyl-leucyl-phenylalanine (fMLP) we hypothesise that released N/OFQ will activate the biosensor. PMNs also release ATP and CHO cells express purinergic receptors coupled to elevated Ca2+. In a system where these receptors (P2Y1, P2Y2 and P2X7) are blocked with high concentrations of PPADS and oATP, PMN stimulation with fMLP increases Ca2+ in PMNs then shortly afterwards the biosensor cells. Our data therfore reports detection of single cell N/OFQ release from immune cells. This was absent when cells were preincubated with the selective NOP antagonist; SB-612111. Collectively this is the first description of single cell N/OFQ release. We will deploy this assay with further purified individual cell types and use this to further study the role of the N/OFQ-NOP system in disease; in particular sepsis where there is strong evidence for increased levels of N/OFQ worsening outcome.


Assuntos
Cálcio , Receptores Opioides , Animais , Bioensaio , Células CHO , Cricetinae , Cricetulus , Humanos , Peptídeos Opioides , Receptores Opioides/metabolismo , Nociceptina
2.
PLoS One ; 17(1): e0260880, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35061679

RESUMO

Opioids targeting mu;µ (MOP) receptors produce analgesia in the peri-operative period and palliative care. They also produce side effects including respiratory depression, tolerance/dependence and addiction. The N/OFQ opioid receptor (NOP) also produces analgesia but is devoid of the major MOP side effects. Evidence exists for MOP-NOP interaction and mixed MOP-NOP ligands produce analgesia with reduced side effects. We have generated a HEKMOP/NOP human expression system and used bivalent MOP-NOP and fluorescent ligands to (i) probe for receptor interaction and (ii) consequences of that interaction. We used HEKMOP/NOP cells and two bivalent ligands; Dermorphin-N/OFQ (MOP agonist-NOP agonist; DeNO) and Dermorphin-UFP101 (MOP agonist-NOP antagonist; De101). We have determined receptor binding profiles, GTPγ[35S] binding, cAMP formation and ERK1/2 activation. We have also probed MOP and NOP receptor interactions in HEK cells and hippocampal neurones using the novel MOP fluorescent ligand, DermorphinATTO488 and the NOP fluorescent ligand N/OFQATTO594. In HEKMOP/NOP MOP ligands displaced NOP binding and NOP ligands displaced MOP binding. Using fluorescent probes in HEKMOP/NOP cells we demonstrated MOP-NOP probe overlap and a FRET signal indicating co-localisation. MOP-NOP were also co-localised in hippocampal tissue. In GTPγ[35S] and cAMP assays NOP stimulation shifted the response to MOP rightwards. At ERK1/2 the response to bivalent ligands generally peaked later. We provide evidence for MOP-NOP interaction in recombinant and native tissue. NOP activation reduces responsiveness of MOP activation; this was shown with conventional and bivalent ligands.


Assuntos
Receptores Opioides
5.
Br J Pharmacol ; 175(24): 4496-4506, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30276802

RESUMO

BACKGROUND AND PURPOSE: The nociceptin/orphanin FQ (N/OFQ) receptor (NOP) is a member of the opioid receptor family and is involved in a number of physiological responses, pain and immune regulation as examples. In this study, we conjugated a red fluorophore-ATTO594 to the peptide ligand N/OFQ (N/OFQATTO594 ) for the NOP receptor and explored NOP receptor function at high (in recombinant systems) and low (on immune cells) expression. EXPERIMENTAL APPROACH: We assessed N/OFQATTO594 receptor binding, selectivity and functional activity in recombinant (CHO) cell lines. Live cell N/OFQATTO594 binding was measured in (i) HEK cells expressing NOP and NOPGFP receptors, (ii) CHO cells expressing the hNOPGαqi5 chimera (to force coupling to measurable Ca2+ responses) and (iii) freshly isolated human polymorphonuclear cells (PMN). KEY RESULTS: N/OFQATTO594 bound to NOP receptor with nM affinity and high selectivity. N/OFQATTO594 activated NOP receptor by reducing cAMP formation and increasing Ca2+ levels in CHOhNOPGαqi5 cells. N/OFQATTO594 was also able to visualize NOP receptors at low expression levels on PMN cells. In NOP-GFP-tagged receptors, N/OFQATTO594 was used in a FRET protocol where GFP emission activated ATTO, visualizing ligand-receptor interaction. When the NOPGFP receptor is activated by N/OFQATTO594 , movement of ligand and receptor from the cell surface to the cytosol can be measured. CONCLUSIONS AND IMPLICATIONS: In the absence of validated NOP receptor antibodies and issues surrounding the use of radiolabels (especially in low expression systems), these data indicate the utility of N/OFQATTO594 to study a wide range of N/OFQ-driven cellular responses.


Assuntos
Corantes Fluorescentes/química , Peptídeos Opioides/química , Receptores Opioides/análise , Animais , Células CHO , Células Cultivadas , Cricetulus , Células HEK293 , Humanos , Neutrófilos/metabolismo , Receptores Opioides/metabolismo , Nociceptina
6.
Br J Anaesth ; 114(4): 646-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680364

RESUMO

BACKGROUND: Opioid tolerance is a limiting factor in chronic pain. Delta opioid peptide (DOP)(δ) receptor antagonism has been shown to reduce tolerance. Here, the common clinical mu opioid peptide (MOP)(µ) receptor agonist fentanyl has been linked to the DOP antagonist Dmt-Tic (2',6'-dimethyl-L-tyrosyl-1,2,3,4-tetrahydrisoquinoline-3-carboxylic acid) to create new bivalent compounds. METHODS: Binding affinities of bivalents(#9, #10, #11, #12 and #13) were measured in Chinese hamster ovary (CHO) cells expressing recombinant human MOP, DOP, Kappa opioid peptide (KOP)(κ) and nociceptin/orphanin FQ opioid peptide (NOP) receptors. Functional studies, measuring GTPγ[(35)S] or ß-arrestin recruitment, were performed in membranes or whole cells respectively expressing MOP and DOP. RESULTS: The new bivalents bound to MOP (pKi : #9:7.31; #10:7.58; #11:7.91; #12:7.94; #13:8.03) and DOP (#9:8.03; #10:8.16; #11:8.17; #12:9.67; #13:9.71). In GTPγ[(35)S] functional assays, compounds #9(pEC50:6.74; intrinsic activity:0.05) #10(7.13;0.34) and #11(7.52;0.27) showed weak partial agonist activity at MOP. Compounds #12 and #13, with longer linkers, showed no functional activity at MOP. In antagonist assays at MOP, compounds #9 (pKb:6.87), #10(7.55) #11(7.81) #12(6.91) and #13(7.05) all reversed the effects of fentanyl. At DOP, all compounds showed antagonist affinity (#9:6.85; #10:8.06; #11:8.11; #12:9.42; #13:9.00), reversing the effects of DPDPE ([D-Pen(2,5)]enkephalin). In ß-arrestin assays, compared with fentanyl (with response at maximum concentration (RMC):13.62), all compounds showed reduced ability to activate ß-arrestin (#9 RMC:1.58; #10:2.72; #11:2.40; #12:1.29; #13:1.58). Compared with fentanyl, the intrinsic activity was: #9:0.12; #10:0.20; #11:0.18; #12:0.09 and #13:0.12. CONCLUSIONS: The addition of a linker between fentanyl and Dmt-Tic did not alter the ability to bind to MOP and DOP, however a substantial loss in MOP functional activity was apparent. This highlights the difficulty in multifunctional opioid development.


Assuntos
Dipeptídeos/farmacologia , Fentanila/farmacologia , Receptores Opioides delta/antagonistas & inibidores , Tetra-Hidroisoquinolinas/farmacologia , Animais , Arrestinas/metabolismo , Células CHO , Cricetinae , Cricetulus , Descoberta de Drogas , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Ligantes , Receptores Opioides delta/fisiologia , Receptores Opioides mu/fisiologia , beta-Arrestinas
8.
Br J Pharmacol ; 171(17): 4138-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24903280

RESUMO

BACKGROUND AND PURPOSE: An innovative chemical approach, named peptide welding technology (PWT), allows the synthesis of multibranched peptides with extraordinary high yield, purity and reproducibility. With this approach, three different tetrabranched derivatives of nociceptin/orphanin FQ (N/OFQ) have been synthesized and named PWT1-N/OFQ, PWT2-N/OFQ and PWT3-N/OFQ. In the present study we investigated the in vitro and in vivo pharmacological profile of PWT N/OFQ derivatives and compared their actions with those of the naturally occurring peptide. EXPERIMENTAL APPROACH: The following in vitro assays were used: receptor and [(35)S]-GTPγS binding, calcium mobilization in cells expressing the human N/OFQ peptide (NOP) receptor, or classical opioid receptors and chimeric G proteins, electrically stimulated mouse vas deferens bioassay. In vivo experiments were performed; locomotor activity was measured in normal mice and in animals with the NOP receptor gene knocked out [NOP(-/-)]. KEY RESULTS: In vitro PWT derivatives of N/OFQ behaved as high affinity potent and rather selective full agonists at human recombinant and animal native NOP receptors. In vivo PWT derivatives mimicked the inhibitory effects exerted by the natural peptide on locomotor activity showing 40-fold higher potency and extremely longer lasting action. The effects of PWT2-N/OFQ were no longer evident in NOP(-/-) mice. CONCLUSIONS AND IMPLICATIONS: The results showed that the PWT can be successfully applied to the peptide sequence of N/OFQ to generate tetrabranched derivatives characterized by a pharmacological profile similar to the native peptide and associated with a higher potency and marked prolongation of action in vivo.


Assuntos
Peptídeos Opioides/química , Peptídeos Opioides/farmacologia , Receptores Opioides/agonistas , Animais , Células CHO , Células Cultivadas , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Conformação Molecular , Peptídeos Opioides/síntese química , Receptores Opioides/deficiência , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...