Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Methods Mol Biol ; 2750: 19-32, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38108964

RESUMO

The CRISPR-Cas9 genome editing system is used to induce mutations in genes of interest resulting in the loss of functional protein. A transgenic zebrafish α1-antitrypsin deficiency (AATD) model displays an unusual phenotype, in that it lacks the hepatic accumulation of the misfolding Z α1-antitrypsin (ZAAT) evident in human and mouse models. Here we describe the application of the CRISPR-Cas9 system to generate mutant zebrafish with defects in key proteostasis networks likely to be involved in the hepatic processing of ZAAT in this model. We describe the targeting of the atf6a and man1b1 genes as examples.


Assuntos
Perciformes , Proteostase , Humanos , Animais , Camundongos , Proteostase/genética , Sistemas CRISPR-Cas/genética , Edição de Genes , Peixe-Zebra/genética , Animais Geneticamente Modificados
3.
Int J Mol Sci ; 24(3)2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36768797

RESUMO

Individuals homozygous for the Pi*Z allele of SERPINA1 (ZAAT) are susceptible to lung disease due to insufficient α1-antitrypsin secretion into the circulation and may develop liver disease due to compromised protein folding that leads to inclusion body formation in the endoplasmic reticulum (ER) of hepatocytes. Transgenic zebrafish expressing human ZAAT show no signs of hepatic accumulation despite displaying serum insufficiency, suggesting the defect in ZAAT secretion occurs independently of its tendency to form inclusion bodies. In this study, proteomic, transcriptomic, and biochemical analysis provided evidence of suppressed Srebp2-mediated cholesterol biosynthesis in the liver of ZAAT-expressing zebrafish. To investigate the basis for this perturbation, CRISPR/Cas9 gene editing was used to manipulate ER protein quality control factors. Mutation of erlec1 resulted in a further suppression in the cholesterol biosynthesis pathway, confirming a role for this ER lectin in targeting misfolded ZAAT for ER-associated degradation (ERAD). Mutation of the two ER mannosidase homologs enhanced ZAAT secretion without inducing hepatic accumulation. These insights into hepatic ZAAT processing suggest potential therapeutic targets to improve secretion and alleviate serum insufficiency in this form of the α1-antitrypsin disease.


Assuntos
Proteômica , Peixe-Zebra , Animais , Humanos , Animais Geneticamente Modificados , Linhagem Celular , Colesterol , Fígado , Peixe-Zebra/genética , alfa 1-Antitripsina/genética
5.
Immunol Cell Biol ; 100(7): 529-546, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471730

RESUMO

To control infections phagocytes can directly kill invading microbes. Macrophage-expressed gene 1 (Mpeg1), a pore-forming protein sometimes known as perforin-2, is reported to be essential for bacterial killing following phagocytosis. Mice homozygous for the mutant allele Mpeg1tm1Pod succumb to bacterial infection and exhibit deficiencies in bacterial killing in vitro. Here we describe a new Mpeg mutant allele Mpeg1tm1.1Pib on the C57BL/6J background. Mice homozygous for the new allele are not abnormally susceptible to bacterial or viral infection, and irrespective of genetic background show no perturbation in bacterial killing in vitro. Potential reasons for these conflicting findings are discussed. In further work, we show that cytokine responses to inflammatory mediators, as well as antibody generation, are also normal in Mpeg1tm1.1Pib/tm1.1Pib mice. We also show that Mpeg1 is localized to a CD68-positive endolysosomal compartment, and that it exists predominantly as a processed, two-chain disulfide-linked molecule. It is abundant in conventional dendritic cells 1, and mice lacking Mpeg1 do not present the model antigen ovalbumin efficiently. We conclude that Mpeg1 is not essential for innate antibacterial protection or antiviral immunity, but may play a focused role early in the adaptive immune response.


Assuntos
Apresentação de Antígeno , Proteínas Citotóxicas Formadoras de Poros , Animais , Infecções Bacterianas/imunologia , Imunidade Inata , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Citotóxicas Formadoras de Poros/imunologia , Viroses/imunologia
6.
Elife ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119362

RESUMO

Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.


Assuntos
Granzimas/genética , Camundongos Knockout/genética , NADP Trans-Hidrogenases/genética , Animais , Artrite/virologia , Febre de Chikungunya/genética , Vírus Chikungunya , Modelos Animais de Doenças , Patrimônio Genético , Genótipo , Granzimas/metabolismo , Camundongos Endogâmicos C57BL , NADP Trans-Hidrogenases/metabolismo
7.
Theranostics ; 11(20): 9873-9883, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34815792

RESUMO

Aims: Recent in vitro findings suggest that the serine protease Granzyme K (GzmK) may act as a proinflammatory mediator. However, its role in sepsis is unknown. Here we aim to understand the role of GzmK in a mouse model of bacterial sepsis and compare it to the biological relevance of Granzyme A (GzmA). Methods: Sepsis was induced in WT, GzmA-/- and GzmK-/- mice by an intraperitoneal injection of 2x108 CFU from E. coli. Mouse survival was monitored during 5 days. Levels of IL-1α, IL-1ß, TNFα and IL-6 in plasma were measured and bacterial load in blood, liver and spleen was analyzed. Finally, profile of cellular expression of GzmA and GzmK was analyzed by FACS. Results: GzmA and GzmK are not involved in the control of bacterial infection. However, GzmA and GzmK deficient mice showed a lower sepsis score in comparison with WT mice, although only GzmA deficient mice exhibited increased survival. GzmA deficient mice also showed reduced expression of some proinflammatory cytokines like IL1-α, IL-ß and IL-6. A similar result was found when extracellular GzmA was therapeutically inhibited in WT mice using serpinb6b, which improved survival and reduced IL-6 expression. Mechanistically, active extracellular GzmA induces the production of IL-6 in macrophages by a mechanism dependent on TLR4 and MyD88. Conclusions: These results suggest that although both proteases contribute to the clinical signs of E. coli-induced sepsis, inhibition of GzmA is sufficient to reduce inflammation and improve survival irrespectively of the presence of other inflammatory granzymes, like GzmK.


Assuntos
Granzimas/metabolismo , Sepse/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Escherichia coli/patogenicidade , Infecções por Escherichia coli/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Sepse/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo
8.
Neuroreport ; 32(16): 1287-1292, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554936

RESUMO

OBJECTIVES: Complete deficiency of the serine protease inhibitor gene, SERPINB6, is responsible for autosomal-recessive, nonsyndromic sensorineural hearing loss in humans. A mouse model of this deafness gene identifies Serpinb6a expression in the neurosensory epithelium and fibrocytes of the cochlea. Homozygous Serpinb6a mutant mice display an exaggerated hearing loss after exposure to moderate acoustic trauma. It is unknown if and how heterozygous Serpinb6a mice show increased vulnerability to acoustic trauma. METHODS: We exposed Serpinb6a+/- and Serpinb6a+/+ mice to acoustic trauma and measured their hearing function prior to, 3 and 14 days postexposure, analysing shifts in hearing threshold and amplitudes of Wave I and II of the auditory brainstem-evoked response (ABR) to 4, 8, 16 and 32 kHz tones. RESULTS: Shifts in hearing threshold and Wave I amplitude of Serpinb6a+/- mice were not significantly different from Serpinb6a+/+ mice at both time points and all frequencies tested (P > 0.05, Mann-Whitney test). However, Wave II amplitudes at 16 and 32 kHz tones, were more severely diminished in Serpinb6a+/- mice (P < 0.05). To exclude any effects of ageing on auditory function in Serpinb6a+/- mice, hearing function of unexposed Serpinb6a+/- mice was measured at start and end of the experimental period. The shift in Wave II amplitude of exposed Serpinb6a+/- mice was significantly lower than unexposed Serpinb6a+/- mice only at 16 and 32 kHz (P < 0.01), confirming acoustic trauma as the main cause of hearing deficits in Serpinb6a+/- mice. CONCLUSION: These results suggest that heterozygous Serpinb6a humans may be vulnerable to noise.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Perda Auditiva Provocada por Ruído/genética , Mutação com Perda de Função , Serpinas/genética , Animais , Limiar Auditivo/fisiologia , Perda Auditiva Provocada por Ruído/metabolismo , Camundongos , Camundongos Knockout , Serpinas/metabolismo
9.
Theranostics ; 11(8): 3781-3795, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664861

RESUMO

Aims: Peritonitis is one of the most common causes of sepsis, a serious syndrome characterized by a dysregulated systemic inflammatory response. Recent evidence suggests that Granzyme A (GzmA), a serine protease mainly expressed by NK and T cells, could act as a proinflammatory mediator and could play an important role in the pathogenesis of sepsis. This work aims to analyze the role and the therapeutic potential of GzmA in the pathogenesis of peritoneal sepsis. Methods: The level of extracellular GzmA as well as GzmA activity were analyzed in serum from healthy volunteers and patients with confirmed peritonitis and were correlated with the Sequential Organ Failure Assessment (SOFA) score. Peritonitis was induced in C57Bl/6 (WT) and GzmA-/- mice by cecal ligation and puncture (CLP). Mice were treated intraperitoneally with antibiotics alone or in combination serpinb6b, a specific GzmA inhibitor, for 5 days. Mouse survival was monitored during 14 days, levels of some proinflammatory cytokines were measured in serum and bacterial load and diversity was analyzed in blood and spleen at different times. Results: Clinically, elevated GzmA was observed in serum from patients with abdominal sepsis suggesting that GzmA plays an important role in this pathology. In the CLP model GzmA deficient mice, or WT mice treated with an extracellular GzmA inhibitor, showed increased survival, which correlated with a reduction in proinflammatory markers in both serum and peritoneal lavage fluid. GzmA deficiency did not influence bacterial load in blood and spleen and GzmA did not affect bacterial replication in macrophages in vitro, indicating that GzmA has no role in bacterial control. Analysis of GzmA in lymphoid cells following CLP showed that it was mainly expressed by NK cells. Mechanistically, we found that extracellular active GzmA acts as a proinflammatory mediator in macrophages by inducing the TLR4-dependent expression of IL-6 and TNFα. Conclusions: Our findings implicate GzmA as a key regulator of the inflammatory response during abdominal sepsis and provide solid evidences about its therapeutic potential for the treatment of this severe pathology.


Assuntos
Granzimas/antagonistas & inibidores , Peritonite/tratamento farmacológico , Peritonite/enzimologia , Sepse/tratamento farmacológico , Sepse/enzimologia , Idoso , Idoso de 80 Anos ou mais , Animais , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Granzimas/sangue , Granzimas/deficiência , Granzimas/genética , Humanos , Mediadores da Inflamação/sangue , Interleucina-6/biossíntese , Células Matadoras Naturais/enzimologia , Macrófagos/enzimologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Peritonite/etiologia , Medicina de Precisão , Sepse/etiologia , Serpinas/farmacologia , Receptor 4 Toll-Like/metabolismo
10.
Eur J Neurosci ; 53(5): 1638-1651, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073422

RESUMO

Inactivating mutations of SERPINB6 in humans result in progressive hearing loss starting in early adulthood (DFNB91). We have previously shown that C57BL/6J mice lacking the orthologous gene, Serpinb6a, exhibit progressive hearing loss, which is associated with progressive loss of distinct cell types in the organ of Corti beginning with outer hair cells (OHCs). However, deafness in these animals occurs much earlier than expected, possibly because C57BL/6J mice also carry an age-related hearing loss mutation in the cadherin 23 gene (Cdh23ahl ) that causes late onset hearing loss. The CBA/CaH strain of mice does not carry Cdh23ah/ahl and may represent a better model of the human DFNB91 patients. Here, we show that transfer of the mutant Serpinb6a allele onto the Cdh23 normal CBA/CaH background markedly delays onset of hearing loss, more closely phenocopying DFNB91, without altering the pattern of cellular loss. Young, pre-symptomatic mice of this genotype exposed to acoustic trauma exhibit permanent hearing loss, compared to controls, associated with the disappearance of OHCs. We conclude that Serpinb6 helps to maintain hearing by protecting hair cells from stress.


Assuntos
Surdez , Perda Auditiva Provocada por Ruído , Adulto , Animais , Caderinas , Cóclea , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA
11.
Cell Rep ; 32(1): 107847, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640217

RESUMO

If not properly regulated, the inflammatory immune response can promote carcinogenesis, as evident in colorectal cancer (CRC). Aiming to gain mechanistic insight into the link between inflammation and CRC, we perform transcriptomics analysis of human CRC, identifying a strong correlation between expression of the serine protease granzyme A (GzmA) and inflammation. In a dextran sodium sulfate and azoxymethane (DSS/AOM) mouse model, deficiency and pharmacological inhibition of extracellular GzmA both attenuate gut inflammation and prevent CRC development, including the initial steps of cell transformation and epithelial-to-mesenchymal transition. Mechanistically, extracellular GzmA induces NF-κB-dependent IL-6 production in macrophages, which in turn promotes STAT3 activation in cultured CRC cells. Accordingly, colon tissues from DSS/AOM-treated, GzmA-deficient animals present reduced levels of pSTAT3. By identifying GzmA as a proinflammatory protease that promotes CRC development, these findings provide information on mechanisms that link immune cell infiltration to cancer progression and present GzmA as a therapeutic target for CRC.


Assuntos
Carcinogênese/patologia , Colo/patologia , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/patologia , Espaço Extracelular/enzimologia , Granzimas/metabolismo , Inflamação/patologia , Doença Aguda , Animais , Azoximetano , Carcinogênese/genética , Doença Crônica , Neoplasias Colorretais/genética , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Sulfato de Dextrana , Progressão da Doença , Granzimas/antagonistas & inibidores , Granzimas/genética , Humanos , Inflamassomos/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/biossíntese , Camundongos Knockout , NF-kappa B/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
12.
J Biol Chem ; 295(28): 9567-9582, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32439802

RESUMO

Natural killer (NK) cells are key innate immunity effectors that combat viral infections and control several cancer types. For their immune function, human NK cells rely largely on five different cytotoxic proteases, called granzymes (A/B/H/K/M). Granzyme B (GrB) initiates at least three distinct cell death pathways, but key aspects of its function remain unexplored because selective probes that detect its activity are currently lacking. In this study, we used a set of unnatural amino acids to fully map the substrate preferences of GrB, demonstrating previously unknown GrB substrate preferences. We then used these preferences to design substrate-based inhibitors and a GrB-activatable activity-based fluorogenic probe. We show that our GrB probes do not significantly react with caspases, making them ideal for in-depth analyses of GrB localization and function in cells. Using our quenched fluorescence substrate, we observed GrB within the cytotoxic granules of human YT cells. When used as cytotoxic effectors, YT cells loaded with GrB attacked MDA-MB-231 target cells, and active GrB influenced its target cell-killing efficiency. In summary, we have developed a set of molecular tools for investigating GrB function in NK cells and demonstrate noninvasive visual detection of GrB with an enzyme-activated fluorescent substrate.


Assuntos
Corantes Fluorescentes/química , Granzimas , Imagem Óptica , Peptídeos/química , Linfócitos T/enzimologia , Linhagem Celular Tumoral , Granzimas/química , Granzimas/metabolismo , Humanos
13.
J Med Chem ; 63(6): 3359-3369, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32142286

RESUMO

Cytotoxic T-lymphocytes (CTLs) and natural killer cells (NKs) kill compromised cells to defend against tumor and viral infections. Both effector cell types use multiple strategies to induce target cell death including Fas/CD95 activation and the release of perforin and a group of lymphocyte granule serine proteases called granzymes. Granzymes have relatively broad and overlapping substrate specificities and may hydrolyze a wide range of peptidic epitopes; it is therefore challenging to identify their natural and synthetic substrates and to distinguish their localization and functions. Here, we present a specific and potent substrate, an inhibitor, and an activity-based probe of Granzyme A (GrA) that can be used to follow functional GrA in cells.


Assuntos
Cumarínicos/farmacologia , Corantes Fluorescentes/farmacologia , Granzimas/análise , Oligopeptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Linhagem Celular Tumoral , Cumarínicos/síntese química , Cumarínicos/toxicidade , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Granzimas/química , Humanos , Oligopeptídeos/síntese química , Oligopeptídeos/toxicidade , Inibidores de Serina Proteinase/síntese química , Inibidores de Serina Proteinase/toxicidade , Especificidade por Substrato
14.
Front Immunol, v. 10, 3083, jan. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2931

RESUMO

Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.

15.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17422

RESUMO

Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.

16.
Proc Natl Acad Sci U S A ; 116(41): 20635-20643, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31548399

RESUMO

SerpinB1, a protease inhibitor and neutrophil survival factor, was recently linked with IL-17-expressing T cells. Here, we show that serpinB1 (Sb1) is dramatically induced in a subset of effector CD4 cells in experimental autoimmune encephalomyelitis (EAE). Despite normal T cell priming, Sb1-/- mice are resistant to EAE with a paucity of T helper (TH) cells that produce two or more of the cytokines, IFNγ, GM-CSF, and IL-17. These multiple cytokine-producing CD4 cells proliferate extremely rapidly; highly express the cytolytic granule proteins perforin-A, granzyme C (GzmC), and GzmA and surface receptors IL-23R, IL-7Rα, and IL-1R1; and can be identified by the surface marker CXCR6. In Sb1-/- mice, CXCR6+ TH cells are generated but fail to expand due to enhanced granule protease-mediated mitochondrial damage leading to suicidal cell death. Finally, anti-CXCR6 antibody treatment, like Sb1 deletion, dramatically reverts EAE, strongly indicating that the CXCR6+ T cells are the drivers of encephalitis.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Encefalomielite Autoimune Experimental/patologia , Receptores CXCR6/metabolismo , Serpinas/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Citocinas/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Interferon gama/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores CXCR6/genética
17.
Nat Commun ; 10(1): 4288, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31537793

RESUMO

Macrophage-expressed gene 1 (MPEG1/Perforin-2) is a perforin-like protein that functions within the phagolysosome to damage engulfed microbes. MPEG1 is thought to form pores in target membranes, however, its mode of action remains unknown. We use cryo-Electron Microscopy (cryo-EM) to determine the 2.4 Å structure of a hexadecameric assembly of MPEG1 that displays the expected features of a soluble prepore complex. We further discover that MPEG1 prepore-like assemblies can be induced to perforate membranes through acidification, such as would occur within maturing phagolysosomes. We next solve the 3.6 Å cryo-EM structure of MPEG1 in complex with liposomes. These data reveal that a multi-vesicular body of 12 kDa (MVB12)-associated ß-prism (MABP) domain binds membranes such that the pore-forming machinery of MPEG1 is oriented away from the bound membrane. This unexpected mechanism of membrane interaction suggests that MPEG1 remains bound to the phagolysosome membrane while simultaneously forming pores in engulfed bacterial targets.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Bactérias/imunologia , Microscopia Crioeletrônica , Humanos , Lipossomos/metabolismo , Lisossomos/fisiologia , Macrófagos/imunologia , Microscopia de Força Atômica , Domínios Proteicos , Estrutura Secundária de Proteína
18.
Biol Chem ; 400(12): 1603-1616, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31091192

RESUMO

In human α1-antitrypsin deficiency, homozygous carriers of the Z (E324K) mutation in the gene SERPINA1 have insufficient circulating α1-antitrypsin and are predisposed to emphysema. Misfolding and accumulation of the mutant protein in hepatocytes also causes endoplasmic reticulum stress and underpins long-term liver damage. Here, we describe transgenic zebrafish (Danio rerio) expressing the wildtype or the Z mutant form of human α1-antitrypsin in hepatocytes. As observed in afflicted humans, and in rodent models, about 80% less α1-antitrypsin is evident in the circulation of zebrafish expressing the Z mutant. Although these zebrafish also show signs of liver stress, they do not accumulate α1-antitrypsin in hepatocytes. This new zebrafish model will provide useful insights into understanding and treatment of α1-antitrypsin deficiency.


Assuntos
Hepatócitos/metabolismo , Modelos Animais , Deficiência de alfa 1-Antitripsina/metabolismo , alfa 1-Antitripsina/metabolismo , Animais , Células CHO , Linhagem Celular , Cricetulus , Humanos , Mutação , Peixe-Zebra , alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/genética
19.
J Invest Dermatol ; 139(4): 930-939, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30395844

RESUMO

Granzyme K (GzmK), traditionally described as a pro-apoptotic, granule-secreted serine protease, has been proposed to promote inflammation. Found at low levels in the plasma of healthy individuals, GzmK is markedly elevated in response to sepsis and infection. In this study we investigated the role of GzmK in inflammation and remodeling in response to thermal injury. In human burn tissue, GzmK was elevated compared with normal skin, with expression predominantly found in macrophages. GzmK was expressed and secreted by cultured human classically activated macrophages. To assess the role of GzmK in response to skin wounding, wild-type or GzmK-/- mice were subjected to grade 2 thermal injury. GzmK-/- mice exhibited improved wound closure, matrix organization, and tensile strength compared with wild-type mice. Reduced proinflammatory IL-6, ICAM-1, VCAM-1, and MCP-1 expressions were observed at 3 days after injury. Additionally, GzmK induced IL-6 expression in keratinocytes and skin fibroblasts that was dependent on PAR-1 activation. Re-epithelialization showed the greatest degree of improvement of all healing parameters, suggesting that keratinocytes are sensitive to GzmK-mediated proteolysis. In support, keratinocytes, but not skin fibroblasts, exposed to GzmK showed impaired wound healing in vitro. In summary, GzmK influences wound healing by augmenting inflammation and impeding epithelialization.


Assuntos
Queimaduras/genética , Regulação da Expressão Gênica , Granzimas/genética , Inflamação/genética , Macrófagos/metabolismo , Reepitelização/fisiologia , Animais , Queimaduras/metabolismo , Queimaduras/patologia , Citocinas/biossíntese , Citocinas/genética , Modelos Animais de Doenças , Fibroblastos/metabolismo , Fibroblastos/patologia , Granzimas/biossíntese , Humanos , Imuno-Histoquímica , Inflamação/metabolismo , Inflamação/patologia , Queratinócitos/metabolismo , Queratinócitos/patologia , Macrófagos/patologia , Camundongos , RNA/genética
20.
Front Immunol ; 10: 3083, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31993061

RESUMO

Granzyme A (GzmA) is secreted by cytotoxic lymphocytes and has traditionally been viewed as a mediator of cell death. However, a growing body of data suggests the physiological role of GzmA is promotion of inflammation. Here, we show that GzmA is significantly elevated in the sera of chikungunya virus (CHIKV) patients and that GzmA levels correlated with viral loads and disease scores in these patients. Serum GzmA levels were also elevated in CHIKV mouse models, with NK cells the likely source. Infection of mice deficient in type I interferon responses with CHIKV, Zika virus, or dengue virus resulted in high levels of circulating GzmA. We also show that subcutaneous injection of enzymically active recombinant mouse GzmA was able to mediate inflammation, both locally at the injection site as well as at a distant site. Protease activated receptors (PARs) may represent targets for GzmA, and we show that treatment with PAR antagonist ameliorated GzmA- and CHIKV-mediated inflammation.


Assuntos
Infecções por Arbovirus/imunologia , Febre de Chikungunya/imunologia , Granzimas/imunologia , Inflamação/imunologia , Células Matadoras Naturais/imunologia , Animais , Granzimas/sangue , Humanos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...