Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(3): 527-533, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319726

RESUMO

New analytical functionality is demonstrated with an enclosed interface that joins a solid phase microextraction (SPME) device, a direct analysis in real time (DART) probe, and a high-resolution mass spectrometer. With a single 20 mm long SPME Arrow, the interface is able to perform five discrete DART analyses on different areas of the same fiber in 1 min of practical operation time. Three-fiber replicates for 15 runs total produce 15% or better center of variance (CV) values for both volatile headspace sampling and direct immersion sampling of a solvated analyte. Chemometric analysis of rapidly acquired headspace data is able to distinguish volatile profiles. Selective desorption within the interface also confers the ability to selectively sample to discrete areas of a fiber, and three different headspace samples or five different liquid samples can be acquired and differentiated with one Arrow. A five-point standard addition curve is constructed to measure the concentration of the solvated analyte. Unmodified commercial components of the analysis system include the fiber itself, the Orbitrap and AccuTOF mass spectrometer platforms, and the conditioning gas chromatograph inlet. Machine diagrams for the SPME-DART interface and Arrow fiber holder are included.

2.
J Phys Chem Lett ; 12(7): 1786-1792, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33576633

RESUMO

The structures of many membrane-bound proteins and polypeptides depend on the membrane potential. However, spectroscopically studying their structures under an applied field is challenging, because a potential is difficult to generate across more than a few bilayers. We study the voltage-dependent structures of the membrane-bound polypeptide, alamethicin, using a spectroelectrochemical cell coated with a rough, gold film to create surface plasmons. The plasmons sufficiently enhance the 2D IR signal to measure a single bilayer. The film is also thick enough to conduct current and thereby apply a potential. The 2D IR spectra resolve features from both 310- and α-helical structures and cross-peaks connecting the two. We observe changes in the peak intensity, not their frequencies, upon applying a voltage. A similar change occurs with pH, which is known to alter the angle of alamethicin relative to the surface normal. The spectra are modeled using a vibrational exciton Hamiltonian, and the voltage-dependent spectra are consistent with a change in angle of the 310- and α-helices in the membrane from 55 to 44°and from 31 to 60°, respectively. The 310- and α-helices are coupled by approximately 10 cm-1. These experiments provide new structural information about alamethicin under a potential difference and demonstrate a technique that might be applied to voltage-gated membrane proteins and compared to molecular dynamics structures.


Assuntos
Alameticina/química , Melhoramento Biomédico/métodos , Proteínas de Membrana/química , Sequência de Aminoácidos , Bicamadas Lipídicas/química , Potenciais da Membrana , Simulação de Dinâmica Molecular , Conformação Proteica , Espectrofotometria Infravermelho , Propriedades de Superfície , Vibração
3.
J Phys Chem A ; 124(17): 3471-3483, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32255629

RESUMO

Surfaces and interfaces are ubiquitous in nature. From cell membranes, to photovoltaic thin films, surfaces have important function in both biological and materials systems. Spectroscopic techniques have been developed to probe systems like these, such as sum frequency generation (SFG) spectroscopies. The advantage of SFG spectroscopy, a second-order spectroscopy, is that it can distinguish between signals produced from molecules in the bulk versus on the surface. We propose a polarization scheme for third-order spectroscopy experiments, such as pump-probe and 2D spectroscopy, to select for surface signals and not bulk signals. This proposed polarization condition uses one pulse perpendicular compared to the other three to isolate cross-peaks arising from molecules with polar and uniaxial (i.e., biaxial) order at a surface, while removing the signal from bulk isotropic molecules. In this work, we focus on two of these cases: XXXY and YYYX, which differ by the sign of the cross-peak they create. We compare this technique to SFG spectroscopy and vibrational circular dichroism to provide insight to the behavior of the cross-peak signal. We propose that these singularly cross-polarized schemes provide odd-ordered spectroscopies the surface-specificity typically associated with even-ordered techniques.

4.
J Phys Chem Lett ; 10(14): 3836-3842, 2019 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-31246039

RESUMO

Immunosensors use antibodies to detect and quantify biomarkers of disease, though the sensors often lack structural information. We create a surface-sensitive two-dimensional infrared (2D IR) spectroscopic immunosensor for studying protein structures. We tether antibodies to a plasmonic surface, flow over a solution of amyloid proteins, and measure the 2D IR spectra. The 2D IR spectra provide a global assessment of antigen structure, and isotopically labeled proteins give residue-specific structural information. We report the 2D IR spectra of fibrils and monomers using a polyclonal antibody that targets human islet amyloid polypeptide (hIAPP). We observe two fibrillar polymorphs differing in their structure at the G24 residue, which supports the hypothesis that hIAPP polymorphs form from a common oligomeric intermediate. This work provides insight into the structure of hIAPP, establishes a new method for studying protein structures using 2D IR spectroscopy, and creates a spectroscopic immunoassay applicable for studying a wide range of biomarkers.


Assuntos
Amiloide/química , Técnicas Biossensoriais , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Humanos , Conformação Proteica , Espectrofotometria Infravermelho
5.
J Chem Phys ; 150(2): 024707, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646693

RESUMO

Spectroscopic techniques that are capable of measuring surfaces and interfaces must overcome two technical challenges: one, the low coverage of molecules at the surface, and two, discerning between signals from the bulk and surface. We present surface enhanced attenuated reflection 2D infrared (SEAR 2D IR) spectroscopy, a method that combines localized surface plasmons with a reflection pump-probe geometry to achieve monolayer sensitivity. The method is demonstrated at 6 µm with the amide I band of a model peptide, a cysteine terminated α-helical peptide tethered to a gold surface. Using SEAR 2D IR spectroscopy, the signal from this sample is enhanced 20 000-times over a monolayer on a dielectric surface. Like attenuated total reflection IR spectroscopy, SEAR 2D IR spectroscopy can be applied to strongly absorbing solvents. We demonstrated this capability by solvating a peptide monolayer with H2O, which cannot normally be used when measuring the amide I band. SEAR 2D IR spectroscopy will be advantageous for studying chemical reactions at electrochemical surfaces, interfacial charge transfer in photovoltaics, and structural changes of transmembrane proteins in lipid membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...