Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 142(20): 1740-1751, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37738562

RESUMO

Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.


Assuntos
Histiocitose , Proteínas Quinases Ativadas por Mitógeno , Humanos , Histiocitose/genética , Histiocitose/patologia , Mutação , Receptores Toll-Like , Inflamação/genética , Proteínas de Transporte de Nucleosídeos/genética , Proteínas de Transporte de Nucleosídeos/metabolismo
2.
Nat Commun ; 14(1): 5871, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735473

RESUMO

The ERG (ETS-related gene) transcription factor is linked to various types of cancer, including leukemia. However, the specific ERG domains and co-factors contributing to leukemogenesis are poorly understood. Drug targeting a transcription factor such as ERG is challenging. Our study reveals the critical role of a conserved amino acid, proline, at position 199, located at the 3' end of the PNT (pointed) domain, in ERG's ability to induce leukemia. P199 is necessary for ERG to promote self-renewal, prevent myeloid differentiation in hematopoietic progenitor cells, and initiate leukemia in mouse models. Here we show that P199 facilitates ERG's interaction with the NCoR-HDAC3 co-repressor complex. Inhibiting HDAC3 reduces the growth of ERG-dependent leukemic and prostate cancer cells, indicating that the interaction between ERG and the NCoR-HDAC3 co-repressor complex is crucial for its oncogenic activity. Thus, targeting this interaction may offer a potential therapeutic intervention.


Assuntos
Leucemia , Fatores de Transcrição , Animais , Masculino , Camundongos , Proteínas Correpressoras , Regulação da Expressão Gênica , Genes Reguladores
3.
Haematologica ; 108(9): 2316-2330, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475518

RESUMO

Mono-allelic germline disruptions of the transcription factor GATA2 result in a propensity for developing myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML), affecting more than 85% of carriers. How a partial loss of GATA2 functionality enables leukemic transformation years later is unclear. This question has remained unsolved mainly due to the lack of informative models, as Gata2 heterozygote mice do not develop hematologic malignancies. Here we show that two different germline Gata2 mutations (TgErg/Gata2het and TgErg/Gata2L359V) accelerate AML in mice expressing the human hematopoietic stem cell regulator ERG. Analysis of Erg/Gata2het fetal liver and bone marrow-derived hematopoietic cells revealed a distinct pre-leukemic phenotype. This was characterized by enhanced transition from stem to progenitor state, increased proliferation, and a striking mitochondrial phenotype, consisting of highly expressed oxidative-phosphorylation-related gene sets, elevated oxygen consumption rates, and notably, markedly distorted mitochondrial morphology. Importantly, the same mitochondrial gene-expression signature was observed in human AML harboring GATA2 aberrations. Similar to the observations in mice, non-leukemic bone marrows from children with germline GATA2 mutation demonstrated marked mitochondrial abnormalities. Thus, we observed the tumor suppressive effects of GATA2 in two germline Gata2 genetic mouse models. As oncogenic mutations often accumulate with age, GATA2 deficiency-mediated priming of hematopoietic cells for oncogenic transformation may explain the earlier occurrence of MDS/AML in patients with GATA2 germline mutation. The mitochondrial phenotype is a potential therapeutic opportunity for the prevention of leukemic transformation in these patients.


Assuntos
Deficiência de GATA2 , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Criança , Humanos , Camundongos , Animais , Deficiência de GATA2/genética , Síndromes Mielodisplásicas/patologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/patologia , Células-Tronco Hematopoéticas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Fator de Transcrição GATA2/genética , Fator de Transcrição GATA2/metabolismo
4.
Nat Commun ; 13(1): 659, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35115489

RESUMO

Kinase signaling fuels growth of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Yet its role in leukemia initiation is unclear and has not been shown in primary human hematopoietic cells. We previously described activating mutations in interleukin-7 receptor alpha (IL7RA) in poor-prognosis "ph-like" BCP-ALL. Here we show that expression of activated mutant IL7RA in human CD34+ hematopoietic stem and progenitor cells induces a preleukemic state in transplanted immunodeficient NOD/LtSz-scid IL2Rγnull mice, characterized by persistence of self-renewing Pro-B cells with non-productive V(D)J gene rearrangements. Preleukemic CD34+CD10highCD19+ cells evolve into BCP-ALL with spontaneously acquired Cyclin Dependent Kinase Inhibitor 2 A (CDKN2A) deletions, as commonly observed in primary human BCP-ALL. CRISPR mediated gene silencing of CDKN2A in primary human CD34+ cells transduced with activated IL7RA results in robust development of BCP-ALLs in-vivo. Thus, we demonstrate that constitutive activation of IL7RA can initiate preleukemia in primary human hematopoietic progenitors and cooperates with CDKN2A silencing in progression into BCP-ALL.


Assuntos
Subunidade alfa de Receptor de Interleucina-7/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Células Precursoras de Linfócitos B/imunologia , Transdução de Sinais/imunologia , Animais , Antígenos CD34/genética , Antígenos CD34/imunologia , Antígenos CD34/metabolismo , Sequência de Bases , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/genética , Inibidor p16 de Quinase Dependente de Ciclina/imunologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Expressão Gênica/imunologia , Humanos , Subunidade alfa de Receptor de Interleucina-7/genética , Subunidade alfa de Receptor de Interleucina-7/metabolismo , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Células Precursoras de Linfócitos B/metabolismo , RNA-Seq/métodos , Receptores de Citocinas/genética , Receptores de Citocinas/imunologia , Receptores de Citocinas/metabolismo , Transdução de Sinais/genética , Análise de Célula Única/métodos , Transplante Heterólogo
5.
Blood ; 139(3): 399-412, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34624096

RESUMO

Mixed-phenotype acute leukemia is a rare subtype of leukemia in which both myeloid and lymphoid markers are co-expressed on the same malignant cells. The pathogenesis is largely unknown, and the treatment is challenging. We previously reported the specific association of the recurrent t(8;12)(q13;p13) chromosomal translocation that creates the ETV6-NCOA2 fusion with T/myeloid leukemias. Here we report that ETV6-NCOA2 initiates T/myeloid leukemia in preclinical models; ectopic expression of ETV6-NCOA2 in mouse bone marrow hematopoietic progenitors induced T/myeloid lymphoma accompanied by spontaneous Notch1-activating mutations. Similarly, cotransduction of human cord blood CD34+ progenitors with ETV6-NCOA2 and a nontransforming NOTCH1 mutant induced T/myeloid leukemia in immunodeficient mice; the immunophenotype and gene expression pattern were similar to those of patient-derived ETV6-NCOA2 leukemias. Mechanistically, we show that ETV6-NCOA2 forms a transcriptional complex with ETV6 and the histone acetyltransferase p300, leading to derepression of ETV6 target genes. The expression of ETV6-NCOA2 in human and mouse nonthymic hematopoietic progenitor cells induces transcriptional dysregulation, which activates a lymphoid program while failing to repress the expression of myeloid genes such as CSF1 and MEF2C. The ETV6-NCOA2 induced arrest at an early immature T-cell developmental stage. The additional acquisition of activating NOTCH1 mutations transforms the early immature ETV6-NCOA2 cells into T/myeloid leukemias. Here, we describe the first preclinical model to depict the initiation of T/myeloid leukemia by a specific somatic genetic aberration.


Assuntos
Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide/genética , Coativador 2 de Receptor Nuclear/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Repressoras/genética , Animais , Transformação Celular Neoplásica , Células Cultivadas , Feminino , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Variante 6 da Proteína do Fator de Translocação ETS
6.
Front Oncol ; 11: 637482, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178626

RESUMO

As treatment protocols for medulloblastoma (MB) are becoming subgroup-specific, means for reliably distinguishing between its subgroups are a timely need. Currently available methods include immunohistochemical stains, which are subjective and often inconclusive, and molecular techniques-e.g., NanoString, microarrays, or DNA methylation assays-which are time-consuming, expensive and not widely available. Quantitative PCR (qPCR) provides a good alternative for these methods, but the current NanoString panel which includes 22 genes is impractical for qPCR. Here, we applied machine-learning-based classifiers to extract reliable, concise gene sets for distinguishing between the four MB subgroups, and we compared the accuracy of these gene sets to that of the known NanoString 22-gene set. We validated our results using an independent microarray-based dataset of 92 samples of all four subgroups. In addition, we performed a qPCR validation on a cohort of 18 patients diagnosed with SHH, Group 3 and Group 4 MB. We found that the 22-gene set can be reduced to only six genes (IMPG2, NPR3, KHDRBS2, RBM24, WIF1, and EMX2) without compromising accuracy. The identified gene set is sufficiently small to make a qPCR-based MB subgroup classification easily accessible to clinicians, even in developing, poorly equipped countries.

7.
Pediatr Blood Cancer ; 68(10): e29138, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34019335

RESUMO

BACKGROUND: Inflammatory manifestations (IM) are well described in adult patients with myelodysplastic syndrome (MDS), but the presentation is highly variable and no standardized treatment exists. This phenomenon is rarely reported in children. As more pediatric patients are hematopoietic stem cell transplantation (HSCT) candidates, the role of anti-inflammatory treatment in relation to HSCT should be defined. PROCEDURE: Here, we report a series of five children from a tertiary center. We describe the clinical presentation, molecular findings, and treatment options. RESULTS: All patients presented with advanced MDS with blast percentages ranging 10-30%, all had severe IM. One patient had MDS secondary to severe congenital neutropenia, the other four patients had presumably primary MDS. All four were found to harbor a PTPN11 gene driver mutation, which is found in 35% of cases of juvenile myelomonocytic leukemia (JMML). The mutation was present in the myeloid lineage but not in T lymphocytes. Three had symptoms of Behcet's-like disease with trisomy 8 in their bone marrow. All patients were treated with anti-inflammatory medications (mainly systemic steroids) in an attempt to bring them to allogeneic HSCT in a better clinical condition. All demonstrated clinical improvement as well as regression in their MDS status post anti-inflammatory treatment. All have recovered from both MDS and their inflammatory symptoms post HSCT. CONCLUSION: Primary pediatric MDS with IM is driven in some cases by PTPN11 mutations, and might be on the clinical spectrum of JMML. Anti-inflammatory treatment may reverse MDS progression and improve the outcome of subsequent HSCT.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mielomonocítica Juvenil , Síndromes Mielodisplásicas , Criança , Humanos , Leucemia Mielomonocítica Juvenil/diagnóstico , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/terapia , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/terapia , Resultado do Tratamento , Trissomia
8.
Nat Cancer ; 1(10): 998-1009, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33479702

RESUMO

Metabolic reprogramming is a key hallmark of cancer, but less is known about metabolic plasticity of the same tumor at different sites. Here, we investigated the metabolic adaptation of leukemia in two different microenvironments, the bone marrow and the central nervous system (CNS). We identified a metabolic signature of fatty-acid synthesis in CNS leukemia, highlighting Stearoyl-CoA desaturase (SCD1) as a key player. In vivo SCD1 overexpression increases CNS disease, whilst genetic or pharmacological inhibition of SCD1 decreases CNS load. Overall, we demonstrated that leukemic cells dynamically rewire metabolic pathways to suit local conditions and that targeting these adaptations can be exploited therapeutically.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Estearoil-CoA Dessaturase , Sistema Nervoso Central/metabolismo , Humanos , Lipogênese , Estearoil-CoA Dessaturase/genética , Microambiente Tumoral
9.
Blood ; 134(19): 1619-1631, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31409672

RESUMO

Mutations in GATA1, which lead to expression of the GATA1s isoform that lacks the GATA1 N terminus, are seen in patients with Diamond-Blackfan anemia (DBA). In our efforts to better understand the connection between GATA1s and DBA, we comprehensively studied erythropoiesis in Gata1s mice. Defects in yolks sac and fetal liver hematopoiesis included impaired terminal maturation and reduced numbers of erythroid progenitors. RNA-sequencing revealed that both erythroid and megakaryocytic gene expression patterns were altered by the loss of the N terminus, including aberrant upregulation of Gata2 and Runx1. Dysregulation of global H3K27 methylation was found in the erythroid progenitors upon loss of N terminus of GATA1. Chromatin-binding assays revealed that, despite similar occupancy of GATA1 and GATA1s, there was a striking reduction of H3K27me3 at regulatory elements of the Gata2 and Runx1 genes. Consistent with the observation that overexpression of GATA2 has been reported to impair erythropoiesis, we found that haploinsufficiency of Gata2 rescued the erythroid defects of Gata1s fetuses. Together, our integrated genomic analysis of transcriptomic and epigenetic signatures reveals that, Gata1 mice provide novel insights into the role of the N terminus of GATA1 in transcriptional regulation and red blood cell maturation which may potentially be useful for DBA patients.


Assuntos
Eritropoese/genética , Fator de Transcrição GATA1/genética , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/fisiopatologia , Animais , Cromatina/genética , Epigênese Genética/genética , Camundongos , Camundongos Mutantes , Isoformas de Proteínas
10.
Cancer Cell ; 36(2): 115-117, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408616

RESUMO

Studies of the mechanisms of acute leukemia transformation from a preleukemic state in humans are hampered by the absence of clinical preleukemia syndromes. In this issue of Cancer Cell, Labuhn et al. provide a functional genomics view on the leukemic evolution from congenital preleukemia in children with Down syndrome.


Assuntos
Síndrome de Down , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Pré-Leucemia , Transformação Celular Neoplásica , Criança , Humanos
12.
Proc Natl Acad Sci U S A ; 114(20): E4030-E4039, 2017 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-28461505

RESUMO

Children with Down syndrome (DS) are prone to development of high-risk B-cell precursor ALL (DS-ALL), which differs genetically from most sporadic pediatric ALLs. Increased expression of cytokine receptor-like factor 2 (CRLF2), the receptor to thymic stromal lymphopoietin (TSLP), characterizes about half of DS-ALLs and also a subgroup of sporadic "Philadelphia-like" ALLs. To understand the pathogenesis of relapsed DS-ALL, we performed integrative genomic analysis of 25 matched diagnosis-remission and -relapse DS-ALLs. We found that the CRLF2 rearrangements are early events during DS-ALL evolution and generally stable between diagnoses and relapse. Secondary activating signaling events in the JAK-STAT/RAS pathway were ubiquitous but highly redundant between diagnosis and relapse, suggesting that signaling is essential but that no specific mutations are "relapse driving." We further found that activated JAK2 may be naturally suppressed in 25% of CRLF2pos DS-ALLs by loss-of-function aberrations in USP9X, a deubiquitinase previously shown to stabilize the activated phosphorylated JAK2. Interrogation of large ALL genomic databases extended our findings up to 25% of CRLF2pos, Philadelphia-like ALLs. Pharmacological or genetic inhibition of USP9X, as well as treatment with low-dose ruxolitinib, enhanced the survival of pre-B ALL cells overexpressing mutated JAK2. Thus, somehow counterintuitive, we found that suppression of JAK-STAT "hypersignaling" may be beneficial to leukemic B-cell precursors. This finding and the reduction of JAK mutated clones at relapse suggest that the therapeutic effect of JAK specific inhibitors may be limited. Rather, combined signaling inhibitors or direct targeting of the TSLP receptor may be a useful therapeutic strategy for DS-ALL.


Assuntos
Síndrome de Down/complicações , Janus Quinases/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Fatores de Transcrição STAT/metabolismo , Adolescente , Linhagem Celular Tumoral , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Recidiva , Transdução de Sinais , Ubiquitina Tiolesterase/genética , Adulto Jovem
13.
Haematologica ; 102(4): 676-685, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27909218

RESUMO

Hematopoietic-specific microRNA-142 is a critical regulator of various blood cell lineages, but its role in erythrocytes is unexplored. Herein, we characterize the impact of microRNA-142 on erythrocyte physiology and molecular cell biology, using a mouse loss-of-function allele. We report that microRNA-142 is required for maintaining the typical erythrocyte biconcave shape and structural resilience, for the normal metabolism of reactive oxygen species, and for overall lifespan. microRNA-142 further controls ACTIN filament homeostasis and membrane skeleton organization. The analyses presented reveal previously unappreciated functions of microRNA-142 and contribute to an emerging view of small RNAs as key players in erythropoiesis. Finally, the work herein demonstrates how a housekeeping network of cytoskeletal regulators can be reshaped by a single micro-RNA denominator in a cell type specific manner.


Assuntos
Sobrevivência Celular/genética , Envelhecimento Eritrocítico/genética , Eritrócitos/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular , Eritrócitos/patologia , Eritrócitos/ultraestrutura , Eritropoese/genética , Humanos , Camundongos , Camundongos Knockout , Oxirredução , Espécies Reativas de Oxigênio
14.
Blood ; 125(8): 1292-301, 2015 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-25533034

RESUMO

Children with Down syndrome (DS) are at increased risk for acute myeloid leukemias (ML-DS) characterized by mixed megakaryocytic and erythroid phenotype and by acquired mutations in the GATA1 gene resulting in a short GATA1s isoform. The chromosome 21 microRNA (miR)-125b cluster has been previously shown to cooperate with GATA1s in transformation of fetal hematopoietic progenitors. In this study, we report that the expression of miR-486-5p is increased in ML-DS compared with non-DS acute megakaryocytic leukemias (AMKLs). miR-486-5p is regulated by GATA1 and GATA1s that bind to the promoter of its host gene ANK1. miR-486-5p is highly expressed in mouse erythroid precursors and knockdown (KD) in ML-DS cells reduced their erythroid phenotype. Ectopic expression and KD of miR-486-5p in primary fetal liver hematopoietic progenitors demonstrated that miR-486-5p cooperates with Gata1s to enhance their self renewal. Consistent with its activation of AKT, overexpression and KD experiments showed its importance for growth and survival of human leukemic cells. Thus, miR-486-5p cooperates with GATA1s in supporting the growth and survival, and the aberrant erythroid phenotype of the megakaryocytic leukemias of DS.


Assuntos
Síndrome de Down/genética , Eritropoese/genética , Leucemia Mieloide Aguda/genética , MicroRNAs/fisiologia , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Pré-Escolar , Síndrome de Down/complicações , Síndrome de Down/fisiopatologia , Células Eritroides/metabolismo , Células HEK293 , Humanos , Células K562 , Leucemia Mieloide Aguda/patologia , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Células Tumorais Cultivadas
15.
Elife ; 3: e01964, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24859754

RESUMO

Genome-encoded microRNAs (miRNAs) provide a posttranscriptional regulatory layer that controls the differentiation and function of various cellular systems, including hematopoietic cells. miR-142 is one of the most prevalently expressed miRNAs within the hematopoietic lineage. To address the in vivo functions of miR-142, we utilized a novel reporter and a loss-of-function mouse allele that we have recently generated. In this study, we show that miR-142 is broadly expressed in the adult hematopoietic system. Our data further reveal that miR-142 is critical for megakaryopoiesis. Genetic ablation of miR-142 caused impaired megakaryocyte maturation, inhibition of polyploidization, abnormal proplatelet formation, and thrombocytopenia. Finally, we characterized a network of miR-142-3p targets which collectively control actin filament homeostasis, thereby ensuring proper execution of actin-dependent proplatelet formation. Our study reveals a pivotal role for miR-142 activity in megakaryocyte maturation and function, and demonstrates a critical contribution of a single miRNA in orchestrating cytoskeletal dynamics and normal hemostasis.DOI: http://dx.doi.org/10.7554/eLife.01964.001.


Assuntos
Citoesqueleto de Actina/metabolismo , Megacariócitos/metabolismo , MicroRNAs/metabolismo , Trombocitopenia/metabolismo , Trombopoese , Animais , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Regulação da Expressão Gênica , Genótipo , Células HEK293 , Hemostasia , Homeostase , Humanos , Megacariócitos/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Fenótipo , Interferência de RNA , Transdução de Sinais , Trombocitopenia/sangue , Trombocitopenia/genética , Trombopoese/genética , Transfecção
16.
Blood ; 124(1): 106-10, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24787007

RESUMO

Gain-of-function somatic mutations introducing cysteines to either the extracellular or to the transmembrane domain (TMD) in interleukin-7 receptor α (IL7R) or cytokine receptor-like factor 2 (CRLF2) have been described in acute lymphoblastic leukemias. Here we report noncysteine in-frame mutations in IL7R and CRLF2 located in a region of the TMD closer to the cytosolic domain. Biochemical and functional assays showed that these are activating mutations conferring cytokine-independent growth of progenitor lymphoid cells in vitro and are transforming in vivo. Protein fragment complementation assays suggest that despite the absence of cysteines, the mechanism of activation is through ligand-independent dimerization. Mutagenesis experiments and ConSurf calculations suggest that the mutations stabilize the homodimeric conformation, positioning the cytosolic kinases in predefined orientation to each other, thereby inducing spontaneous receptor activation independently of external signals. Hence, type I cytokine receptors may be activated in leukemia through 2 types of transmembrane somatic dimerizing mutations.


Assuntos
Mutação , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Receptores de Citocinas/genética , Receptores de Interleucina-7/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Células Cultivadas , Cisteína , Análise Mutacional de DNA , Feminino , Citometria de Fluxo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Mutagênese/genética , Transdução de Sinais/genética , Transdução Genética
17.
Blood ; 122(15): 2694-703, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23974202

RESUMO

The ETS transcription factor ERG plays a central role in definitive hematopoiesis, and its overexpression in acute myeloid leukemia (AML) is associated with a stem cell signature and poor prognosis. Yet how ERG causes leukemia is unclear. Here we show that pan-hematopoietic ERG expression induces an early progenitor myeloid leukemia in transgenic mice. Integrated genome-scale analysis of gene expression and ERG binding profiles revealed that ERG activates a transcriptional program similar to human AML stem/progenitor cells and to human AML with high ERG expression. This transcriptional program was associated with activation of RAS that was required for leukemia cells growth in vitro and in vivo. We further show that ERG induces expression of the Pim1 kinase oncogene through a novel hematopoietic enhancer validated in transgenic mice and human CD34(+) normal and leukemic cells. Pim1 inhibition disrupts growth and induces apoptosis of ERG-expressing leukemic cells. The importance of the ERG/PIM1 axis is further underscored by the poorer prognosis of AML highly expressing ERG and PIM1. Thus, integrative genomic analysis demonstrates that ERG causes myeloid progenitor leukemia characterized by an induction of leukemia stem cell transcriptional programs. Pim1 and the RAS pathway are potential therapeutic targets of these high-risk leukemias.


Assuntos
Regulação Leucêmica da Expressão Gênica/fisiologia , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Transativadores/genética , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos , Elementos Facilitadores Genéticos/genética , Genômica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Células Progenitoras Mieloides/fisiologia , Transplante de Neoplasias , Transcrição Gênica/fisiologia , Regulador Transcricional ERG
18.
Blood ; 122(6): 988-98, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23719302

RESUMO

Children with Down syndrome develop a unique congenital clonal megakaryocytic proliferation disorder (transient myeloproliferative disorder [TMD]). It is caused by an expansion of fetal megakaryocyte-erythroid progenitors (MEPs) triggered by trisomy of chromosome 21 and is further enhanced by the somatic acquisition of a mutation in GATA1. These mutations result in the expression of a short-isoform GATA1s lacking the N-terminal domain. To examine the hypothesis that the Hsa21 ETS transcription factor ERG cooperates with GATA1s in this process, we generated double-transgenic mice expressing hERG and Gata1s. We show that increased expression of ERG by itself is sufficient to induce expansion of MEPs in fetal livers. Gata1s expression synergizes with ERG in enhancing the expansion of fetal MEPs and megakaryocytic precursors, resulting in hepatic fibrosis, transient postnatal thrombocytosis, anemia, a gene expression profile that is similar to that of human TMD and progression to progenitor myeloid leukemia by 3 months of age. This ERG/Gata1s transgenic mouse model also uncovers an essential role for the N terminus of Gata1 in erythropoiesis and the antagonistic role of ERG in fetal erythroid differentiation and survival. The human relevance of this finding is underscored by the recent discovery of similar mutations in GATA1 in patients with Diamond-Blackfan anemia.


Assuntos
Síndrome de Down/sangue , Síndrome de Down/complicações , Hematopoese , Transtornos Mieloproliferativos/sangue , Transtornos Mieloproliferativos/complicações , Animais , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fator de Transcrição GATA1/metabolismo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Fígado/embriologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Proteínas Oncogênicas/metabolismo , Células-Tronco/citologia , Fatores de Transcrição , Regulador Transcricional ERG
19.
Cell ; 150(3): 575-89, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22863010

RESUMO

The mechanism by which cells decide to skip mitosis to become polyploid is largely undefined. Here we used a high-content image-based screen to identify small-molecule probes that induce polyploidization of megakaryocytic leukemia cells and serve as perturbagens to help understand this process. Our study implicates five networks of kinases that regulate the switch to polyploidy. Moreover, we find that dimethylfasudil (diMF, H-1152P) selectively increased polyploidization, mature cell-surface marker expression, and apoptosis of malignant megakaryocytes. An integrated target identification approach employing proteomic and shRNA screening revealed that a major target of diMF is Aurora kinase A (AURKA). We further find that MLN8237 (Alisertib), a selective inhibitor of AURKA, induced polyploidization and expression of mature megakaryocyte markers in acute megakaryocytic leukemia (AMKL) blasts and displayed potent anti-AMKL activity in vivo. Our findings provide a rationale to support clinical trials of MLN8237 and other inducers of polyploidization and differentiation in AMKL.


Assuntos
Azepinas/farmacologia , Descoberta de Drogas , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Megacariócitos/metabolismo , Poliploidia , Pirimidinas/farmacologia , Bibliotecas de Moléculas Pequenas , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/análogos & derivados , 1-(5-Isoquinolinasulfonil)-2-Metilpiperazina/farmacologia , Animais , Aurora Quinase A , Aurora Quinases , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Megacarioblástica Aguda/genética , Megacariócitos/citologia , Megacariócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mapas de Interação de Proteínas , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/metabolismo
20.
J Clin Invest ; 122(3): 807-10, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22354166

RESUMO

Children with Down syndrome (DS) have a markedly increased risk of developing acute megakaryoblastic leukemia (AMKL) and acute lymphoblastic leukemia compared with that of children without DS. Despite recent breakthroughs, it is not clear which genes on chromosome 21, the chromosome that is trisomic in individuals with DS, cause this predisposition. In this issue of the JCI, Malinge et al. report their loss- and gain-of-function experiments in mouse and human cells that show that increased expression of the kinase encoded by the chromosome 21 gene DYRK1A suppresses the nuclear factor of activated T cells pathway and promotes AMKL. Interestingly, the same protein has been suggested to contribute to the reduced risk of epithelial cancers in adults with DS, leading to the possibility that it could be proleukemic in children and antitumorigenic in adults.


Assuntos
Cromossomos Humanos Par 21 , Síndrome de Down/genética , Leucemia Megacarioblástica Aguda/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Animais , Humanos , Quinases Dyrk
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...