Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 19(3): e1010941, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36867658

RESUMO

As researchers develop computational models of neural systems with increasing sophistication and scale, it is often the case that fully de novo model development is impractical and inefficient. Thus arises a critical need to quickly find, evaluate, re-use, and build upon models and model components developed by other researchers. We introduce the NeuroML Database (NeuroML-DB.org), which has been developed to address this need and to complement other model sharing resources. NeuroML-DB stores over 1,500 previously published models of ion channels, cells, and networks that have been translated to the modular NeuroML model description language. The database also provides reciprocal links to other neuroscience model databases (ModelDB, Open Source Brain) as well as access to the original model publications (PubMed). These links along with Neuroscience Information Framework (NIF) search functionality provide deep integration with other neuroscience community modeling resources and greatly facilitate the task of finding suitable models for reuse. Serving as an intermediate language, NeuroML and its tooling ecosystem enable efficient translation of models to other popular simulator formats. The modular nature also enables efficient analysis of a large number of models and inspection of their properties. Search capabilities of the database, together with web-based, programmable online interfaces, allow the community of researchers to rapidly assess stored model electrophysiology, morphology, and computational complexity properties. We use these capabilities to perform a database-scale analysis of neuron and ion channel models and describe a novel tetrahedral structure formed by cell model clusters in the space of model properties and features. This analysis provides further information about model similarity to enrich database search.


Assuntos
Neurociências , Software , Ecossistema , PubMed , Neurônios/fisiologia
2.
Neuron ; 103(3): 395-411.e5, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31201122

RESUMO

Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.


Assuntos
Encéfalo/fisiologia , Biologia Computacional/normas , Simulação por Computador , Modelos Neurológicos , Neurônios/fisiologia , Encéfalo/citologia , Biologia Computacional/métodos , Humanos , Internet , Redes Neurais de Computação , Sistemas On-Line
3.
Artigo em Inglês | MEDLINE | ID: mdl-30774186

RESUMO

In ants, bees, and other social Hymenoptera alarm pheromones are widely employed to coordinate colony nest defense. In that context, alarm pheromones elicit innate species-specific defensive behaviors. Therefore, in terms of classical conditioning, an alarm pheromone could act as an unconditioned stimulus (US). Here we test this hypothesis by establishing whether repeated exposure to alarm pheromone in different testing contexts modifies the alarm response. We evaluate colony level alarm responses in the stingless bee, Tetragonisca angustula, which has a morphologically distinct guard caste. First, we describe the overall topology of defense behaviors in the presence of an alarm pheromone. Second, we show that repeated, regular exposure to synthetic alarm pheromone reduces different components of the alarm response, and memory of that exposure decays over time. This observed decrease followed by recovery occurs over different time frames and is consistent with behavioral habituation. We further tested whether the alarm pheromone can act as a US to classically condition guards to modify their defense behaviors in the presence of a novel (conditioned) stimulus (CS). We found no consistent changes in the response to the CS. Our study demonstrates the possibility that colony-level alarm responses can be adaptively modified by experience in response to changing environmental threats. Further studies are now needed to reveal the extent of these habituation-like responses in regard to other pheromones, the potential mechanisms that underlie this phenomenon, and the range of adaptive contexts in which they function at the colony level.

4.
Behav Res Methods ; 49(2): 576-587, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27130170

RESUMO

We describe SwarmSight (available at https://github.com/justasb/SwarmSight ), a novel, open-source, Microsoft Windows software tool for quantitative assessment of the temporal progression of animal group activity levels from recorded videos. The tool utilizes a background subtraction machine vision algorithm and provides an activity metric that can be used to quantitatively assess and compare animal group behavior. Here we demonstrate the tool's utility by analyzing defensive bee behavior as modulated by alarm pheromones, wild-bird feeding onset and interruption, and cockroach nest-finding activity. Although more sophisticated, commercial software packages are available, SwarmSight provides a low-cost, open-source, and easy-to-use alternative that is suitable for a wide range of users, including minimally trained research technicians and behavioral science undergraduate students in classroom laboratory settings.


Assuntos
Comportamento Animal , Software , Gravação em Vídeo/métodos , Algoritmos , Animais , Fatores de Tempo
5.
J Vis Exp ; (130)2017 12 25.
Artigo em Inglês | MEDLINE | ID: mdl-29364251

RESUMO

Many scientifically and agriculturally important insects use antennae to detect the presence of volatile chemical compounds and extend their proboscis during feeding. The ability to rapidly obtain high-resolution measurements of natural antenna and proboscis movements and assess how they change in response to chemical, developmental, and genetic manipulations can aid the understanding of insect behavior. By extending our previous work on assessing aggregate insect swarm or animal group movements from natural and laboratory videos using the video analysis software SwarmSight, we developed a novel, free, and open-source software module, SwarmSight Appendage Tracking (SwarmSight.org) for frame-by-frame tracking of insect antenna and proboscis positions from conventional web camera videos using conventional computers. The software processes frames about 120 times faster than humans, performs at better than human accuracy, and, using 30 frames per second (fps) videos, can capture antennal dynamics up to 15 Hz. The software was used to track the antennal response of honey bees to two odors and found significant mean antennal retractions away from the odor source about 1 s after odor presentation. We observed antenna position density heat map cluster formation and cluster and mean angle dependence on odor concentration.


Assuntos
Antenas de Artrópodes/fisiologia , Abelhas/fisiologia , Sistemas Computacionais , Movimento/fisiologia , Animais , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...