Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(1): 626-633, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36534479

RESUMO

Enantioconvergent catalysis has the potential to convert different isomers of a starting material to a single highly enantioenriched product. Here we report a novel enantioselective double convergent 1,3-rearrangement/hydrogenation of allylic alcohols using an Ir-N,P catalyst. A variety of allylic alcohols, each consisting of a 1:1:1:1 mixture of four isomers, were converted to the corresponding tertiary alcohols with two contiguous stereogenic centers, in up to 99% ee and 99:1 d.r. DFT calculations, and control experiments suggest that the 1,3-rearrangement is the crucial stereodetermining element of the reaction.


Assuntos
Álcoois , Irídio , Hidrogenação , Estereoisomerismo , Catálise
2.
Nat Commun ; 13(1): 361, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042913

RESUMO

Asymmetric hydrogenation of olefins constitutes a practical and efficient method to introduce chirality into prochiral substrates. However, the absolute majority of the developed methodologies is enantiodivergent and thus require isomerically pure olefins which is a considerable drawback since most olefination strategies produce (E/Z)-mixtures. Although some advances have been reported, a general enantioconvergent hydrogenation featuring a broad functional group tolerance remains elusive. Here, we report the development of a general iridium-catalyzed enantioconvergent hydrogenation of a broad range of functionalized trisubstituted olefins. The substitution pattern around the olefin is critical; whereas α-prochiral olefins can undergo an enantioconvergent hydrogenation, ß-prochiral olefins react in an enantiodivergent manner. The presented methodology hydrogenates α-prochiral substrates with excellent control of enantioselection and high isolated yields. Most importantly, both isomerically pure alkenes as well as isomeric mixtures can be hydrogenated to yield the same major enantiomer in excellent enantiomeric excesses which is unusual in transition-metal catalyzed asymmetric hydrogenations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...