Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 192: 106422, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286390

RESUMO

Gait ataxia is one of the most common and impactful consequences of cerebellar dysfunction. Purkinje cells, the sole output neurons of the cerebellar cortex, are often involved in the underlying pathology, but their specific functions during locomotor control in health and disease remain obfuscated. We aimed to describe the effect of gradual adult-onset Purkinje cell degeneration on gaiting patterns in mice, and to determine whether two different mechanisms that both lead to Purkinje cell degeneration cause different patterns in the development of gait ataxia. Using the ErasmusLadder together with a newly developed limb detection algorithm and machine learning-based classification, we subjected mice to a challenging locomotor task with detailed analysis of single limb parameters, intralimb coordination and whole-body movement. We tested two Purkinje cell-specific mouse models, one involving stochastic cell death due to impaired DNA repair mechanisms (Pcp2-Ercc1-/-), the other carrying the mutation that causes spinocerebellar ataxia type 1 (Pcp2-ATXN1[82Q]). Both mouse models showed progressive gaiting deficits, but the sequence with which gaiting parameters deteriorated was different between mouse lines. Our longitudinal approach revealed that gradual loss of Purkinje cell function can lead to a complex pattern of loss of function over time, and that this pattern depends on the specifics of the pathological mechanisms involved. We hypothesize that this variability will also be present in disease progression in patients, and that our findings will facilitate the study of therapeutic interventions in mice, as subtle changes in locomotor abilities can be quantified by our methods.


Assuntos
Células de Purkinje , Ataxias Espinocerebelares , Humanos , Camundongos , Animais , Células de Purkinje/metabolismo , Marcha Atáxica/metabolismo , Marcha Atáxica/patologia , Camundongos Transgênicos , Ataxias Espinocerebelares/genética , Neurônios/patologia , Cerebelo/patologia , Modelos Animais de Doenças
2.
Front Mol Neurosci ; 16: 1185665, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293544

RESUMO

Background: Dietary restriction (DR) is a well-established universal anti-aging intervention, and is neuroprotective in multiple models of nervous system disease, including models with cerebellar pathology. The beneficial effects of DR are associated with a rearrangement of gene expression that modulate metabolic and cytoprotective pathways. However, the effect of DR on the cerebellar transcriptome remained to be fully defined. Results: Here we analyzed the effect of a classical 30% DR protocol on the transcriptome of cerebellar cortex of young-adult male mice using RNAseq. We found that about 5% of expressed genes were differentially expressed in DR cerebellum, the far majority of whom showing subtle expression changes. A large proportion of down-regulated genes are implicated in signaling pathways, in particular pathways associated with neuronal signaling. DR up regulated pathways in large part were associated with cytoprotection and DNA repair. Analysis of the expression of cell-specific gene sets, indicated a strong enrichment of DR down genes in Purkinje cells, while genes specifically associated with granule cells did not show such a preferential down-regulation. Conclusion: Our data show that DR may have a clear effect on the cerebellar transcriptome inducing a mild shift from physiology towards maintenance and repair, and having cell-type specific effects.

4.
Front Aging ; 3: 1005322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313181

RESUMO

Despite efficient repair, DNA damage inevitably accumulates with time affecting proper cell function and viability, thereby driving systemic aging. Interventions that either prevent DNA damage or enhance DNA repair are thus likely to extend health- and lifespan across species. However, effective genome-protecting compounds are largely lacking. Here, we use Ercc1 Δ/- and Xpg -/- DNA repair-deficient mutants as two bona fide accelerated aging mouse models to test propitious anti-aging pharmaceutical interventions. Ercc1 Δ/- and Xpg -/- mice show shortened lifespan with accelerated aging across numerous organs and tissues. Previously, we demonstrated that a well-established anti-aging intervention, dietary restriction, reduced DNA damage, and dramatically improved healthspan, strongly extended lifespan, and delayed all aging pathology investigated. Here, we further utilize the short lifespan and early onset of signs of neurological degeneration in Ercc1 Δ/- and Xpg -/- mice to test compounds that influence nutrient sensing (metformin, acarbose, resveratrol), inflammation (aspirin, ibuprofen), mitochondrial processes (idebenone, sodium nitrate, dichloroacetate), glucose homeostasis (trehalose, GlcNAc) and nicotinamide adenine dinucleotide (NAD+) metabolism. While some of the compounds have shown anti-aging features in WT animals, most of them failed to significantly alter lifespan or features of neurodegeneration of our mice. The two NAD+ precursors; nicotinamide riboside (NR) and nicotinic acid (NA), did however induce benefits, consistent with the role of NAD+ in facilitating DNA damage repair. Together, our results illustrate the applicability of short-lived repair mutants for systematic screening of anti-aging interventions capable of reducing DNA damage accumulation.

5.
Aging Cell ; 20(2): e13302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33484480

RESUMO

Dietary restriction (DR) and rapamycin extend healthspan and life span across multiple species. We have recently shown that DR in progeroid DNA repair-deficient mice dramatically extended healthspan and trippled life span. Here, we show that rapamycin, while significantly lowering mTOR signaling, failed to improve life span nor healthspan of DNA repair-deficient Ercc1∆/- mice, contrary to DR tested in parallel. Rapamycin interventions focusing on dosage, gender, and timing all were unable to alter life span. Even genetically modifying mTOR signaling failed to increase life span of DNA repair-deficient mice. The absence of effects by rapamycin on P53 in brain and transcription stress in liver is in sharp contrast with results obtained by DR, and appoints reducing DNA damage and transcription stress as an important mode of action of DR, lacking by rapamycin. Together, this indicates that mTOR inhibition does not mediate the beneficial effects of DR in progeroid mice, revealing that DR and rapamycin strongly differ in their modes of action.


Assuntos
Restrição Calórica , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Longevidade , Animais , Reparo do DNA , Camundongos , Camundongos Endogâmicos , Camundongos Knockout , Sirolimo/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...